Interpolation via scipy
This commit is contained in:
107
examples/rpslam_scipy.py
Executable file
107
examples/rpslam_scipy.py
Executable file
@@ -0,0 +1,107 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
'''
|
||||
rpslam.py : BreezySLAM Python with SLAMTECH RP A1 Lidar
|
||||
|
||||
Copyright (C) 2018 Simon D. Levy
|
||||
|
||||
This code is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as
|
||||
published by the Free Software Foundation, either version 3 of the
|
||||
License, or (at your option) any later version.
|
||||
|
||||
This code is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this code. If not, see <http://www.gnu.org/licenses/>.
|
||||
'''
|
||||
|
||||
MAP_SIZE_PIXELS = 500
|
||||
MAP_SIZE_METERS = 10
|
||||
LIDAR_DEVICE = '/dev/ttyUSB0'
|
||||
MIN_SAMPLES = 180
|
||||
|
||||
from breezyslam.algorithms import RMHC_SLAM
|
||||
from breezyslam.sensors import RPLidarA1 as LaserModel
|
||||
|
||||
from rplidar import RPLidar as Lidar
|
||||
|
||||
from pltslamshow import SlamShow
|
||||
|
||||
from scipy.interpolate import interp1d
|
||||
import numpy as np
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Connect to Lidar unit
|
||||
lidar = Lidar(LIDAR_DEVICE)
|
||||
|
||||
# Create an RMHC SLAM object with a laser model and optional robot model
|
||||
slam = RMHC_SLAM(LaserModel(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)
|
||||
|
||||
# Set up a SLAM display
|
||||
display = SlamShow(MAP_SIZE_PIXELS, MAP_SIZE_METERS*1000/MAP_SIZE_PIXELS, 'SLAM')
|
||||
|
||||
# Initialize an empty trajectory
|
||||
trajectory = []
|
||||
|
||||
# Initialize empty map
|
||||
mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)
|
||||
|
||||
# Create an iterator to collect scan data from the RPLidar
|
||||
iterator = lidar.iter_scans()
|
||||
|
||||
# We will use this to store previous scan in case current scan is inadequate
|
||||
previous_distances = None
|
||||
|
||||
# First scan is crap, so ignore it
|
||||
next(iterator)
|
||||
|
||||
while True:
|
||||
|
||||
# Extrat (quality, angle, distance) triples from current scan
|
||||
items = [item for item in next(iterator)]
|
||||
|
||||
# Extract distances and angles from triples
|
||||
distances = [item[2] for item in items]
|
||||
angles = [item[1] for item in items]
|
||||
|
||||
print(len(distances))
|
||||
|
||||
# Update SLAM with current Lidar scan and scan angles if adequate
|
||||
if len(distances) > MIN_SAMPLES:
|
||||
|
||||
# First interpolate to get 360 angles from 0 through 359, and corresponding distances
|
||||
f = interp1d(angles, distances, fill_value='extrapolate')
|
||||
distances = list(f(np.arange(360))) # slam.update wants a list
|
||||
|
||||
# Then update with interpolated distances
|
||||
slam.update(distances)
|
||||
|
||||
# Store interplated distances for next time
|
||||
previous_distances = distances.copy()
|
||||
|
||||
# If not adequate, use previous
|
||||
elif previous_distances is not None:
|
||||
slam.update(previous_distances)
|
||||
|
||||
# Get current robot position
|
||||
x, y, theta = slam.getpos()
|
||||
|
||||
# Get current map bytes as grayscale
|
||||
slam.getmap(mapbytes)
|
||||
|
||||
display.displayMap(mapbytes)
|
||||
|
||||
display.setPose(x, y, theta)
|
||||
|
||||
# Break on window close
|
||||
if not display.refresh():
|
||||
break
|
||||
|
||||
# Shut down the lidar connection
|
||||
lidar.stop()
|
||||
lidar.disconnect()
|
||||
Reference in New Issue
Block a user