Add compiling packnet model, refactor modules to not duplicate loaders and trainers
This commit is contained in:
10
losses.py
10
losses.py
@@ -6,15 +6,15 @@ def dense_depth_loss_function(y, y_pred):
|
||||
Implementation of the loss from the dense depth paper https://arxiv.org/pdf/1812.11941.pdf
|
||||
"""
|
||||
# Point-wise L1 loss
|
||||
l_depth = tf.reduce_mean(tf.math.abs(y_pred - y), axis=-1)
|
||||
l1_depth = tf.reduce_mean(tf.math.abs(y_pred - y), axis=-1)
|
||||
|
||||
# L1 loss over image gradients
|
||||
dy, dx = tf.image.image_gradients(y)
|
||||
dy_pred, dx_pred = tf.image.image_gradients(y_pred)
|
||||
l_grad = tf.reduce_mean(tf.math.abs(dy_pred - dy) +
|
||||
tf.math.abs(dx_pred - dx), axis=-1)
|
||||
gradient = tf.reduce_mean(tf.math.abs(dy_pred - dy) +
|
||||
tf.math.abs(dx_pred - dx), axis=-1)
|
||||
|
||||
# Structural Similarity (SSIM)
|
||||
l_ssim = (1 - tf.image.ssim(y, y_pred, 500)) / 2
|
||||
ssim = (1 - tf.image.ssim(y, y_pred, 500)) / 2
|
||||
|
||||
return 0.1 * tf.reduce_mean(l_depth) + tf.reduce_mean(l_grad) + l_ssim
|
||||
return 0.1 * tf.reduce_mean(l1_depth) + tf.reduce_mean(gradient) + ssim
|
||||
|
||||
Reference in New Issue
Block a user