Add compiling packnet model, refactor modules to not duplicate loaders and trainers
This commit is contained in:
@@ -1,9 +1,8 @@
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras as keras
|
||||
import tensorflow_datasets as tfds
|
||||
from load import load_nyu, load_nyu_evaluate
|
||||
|
||||
from load import load_nyu_evaluate
|
||||
from metric import *
|
||||
from util import crop_and_resize
|
||||
# Needed for the kitti dataset, don't delete
|
||||
|
||||
"""
|
||||
Unofficial tensorflow keras implementation of FastDepth (mobilenet_nnconv5).
|
||||
@@ -76,59 +75,6 @@ def mobilenet_nnconv5(weights=None, shape=(224, 224, 3)):
|
||||
return keras.Model(inputs=input, outputs=x, name="fast_depth")
|
||||
|
||||
|
||||
def delta1_metric(y_true, y_pred):
|
||||
maxRatio = tf.maximum(y_pred / y_true, y_true / y_pred)
|
||||
return tf.nn.moments(tf.cast(maxRatio < tf.convert_to_tensor(1.25), tf.float32), axes=None)[0]
|
||||
|
||||
|
||||
def delta2_metric(y_true, y_pred):
|
||||
maxRatio = tf.maximum(y_pred / y_true, y_true / y_pred)
|
||||
return tf.nn.moments(tf.cast(maxRatio < tf.convert_to_tensor(1.25 ** 2), tf.float32), axes=None)[0]
|
||||
|
||||
|
||||
def delta3_metric(y_true, y_pred):
|
||||
maxRatio = tf.maximum(y_pred / y_true, y_true / y_pred)
|
||||
return tf.nn.moments(tf.cast(maxRatio < tf.convert_to_tensor(1.25 ** 3), tf.float32), axes=None)[0]
|
||||
|
||||
|
||||
def compile(model, optimiser=keras.optimizers.SGD(), loss=keras.losses.MeanSquaredError(), custom_metrics=None):
|
||||
"""
|
||||
Compile FastDepth model with relevant metrics
|
||||
:param model: Model to compile
|
||||
:param optimiser: Custom optimiser to use
|
||||
:param loss: Loss function to use
|
||||
:param include_metrics: Whether to include metrics (RMSE, MSE, a1,2,3)
|
||||
"""
|
||||
model.compile(optimizer=optimiser,
|
||||
loss=loss,
|
||||
metrics=[keras.metrics.RootMeanSquaredError(),
|
||||
keras.metrics.MeanSquaredError(),
|
||||
delta1_metric,
|
||||
delta2_metric,
|
||||
delta3_metric] if custom_metrics is None else custom_metrics)
|
||||
|
||||
|
||||
def train(existing_model=None, pretrained_weights='imagenet', epochs=4, save_file=None, dataset=None):
|
||||
"""
|
||||
Compile, train and save (if a save file is specified) a Fast Depth model.
|
||||
:param existing_model: Existing FastDepth model to train. None will create
|
||||
:param pretrained_weights: Weights to use if existing_model is not specified. See keras.applications.MobileNet
|
||||
weights parameter for options here.
|
||||
:param epochs: Number of epochs to run for
|
||||
:param save_file: File/directory to save to after training. By default the model won't be saved
|
||||
:param dataset: Train dataset to use. By default will DOWNLOAD and use tensorflow nyu_v2 dataset
|
||||
"""
|
||||
if not existing_model:
|
||||
existing_model = mobilenet_nnconv5(pretrained_weights)
|
||||
compile(existing_model)
|
||||
if not dataset:
|
||||
dataset = load_nyu()
|
||||
existing_model.fit(dataset, epochs=epochs)
|
||||
if save_file:
|
||||
existing_model.save(save_file)
|
||||
return existing_model
|
||||
|
||||
|
||||
def evaluate(compiled_model, dataset=None):
|
||||
"""
|
||||
Evaluate the model using rmse, delta1/2/3 metrics
|
||||
@@ -152,16 +98,6 @@ def forward(model, image):
|
||||
return model(crop_and_resize(image))
|
||||
|
||||
|
||||
def load_model(file):
|
||||
"""
|
||||
Load previously trained FastDepth model from disk. Will include relevant metrics (custom objects)
|
||||
:param file: File/directory to load the model from
|
||||
:return:
|
||||
"""
|
||||
return keras.models.load_model(file, custom_objects={'delta1_metric': delta1_metric,
|
||||
'delta2_metric': delta2_metric,
|
||||
'delta3_metric': delta3_metric})
|
||||
|
||||
if __name__ == '__main__':
|
||||
model = mobilenet_nnconv5()
|
||||
model.summary()
|
||||
|
||||
19
load.py
19
load.py
@@ -1,6 +1,9 @@
|
||||
from util import crop_and_resize
|
||||
import tensorflow_datasets as tfds
|
||||
import tensorflow.keras as keras
|
||||
import tensorflow_datasets as tfds
|
||||
|
||||
from losses import dense_depth_loss_function
|
||||
from metric import *
|
||||
from util import crop_and_resize
|
||||
|
||||
|
||||
def load_nyu(download_dir='../nyu', out_shape=(224, 224)):
|
||||
@@ -31,3 +34,15 @@ def load_kitti(download_dir='../kitti', out_shape=(224, 224)):
|
||||
ds = tfds.builder('kitti_depth')
|
||||
ds.download_and_prepare(download_dir=download_dir)
|
||||
return ds.as_dataset(tfds.Split.TRAIN).batch(8).map(lambda x: crop_and_resize(x, out_shape))
|
||||
|
||||
|
||||
def load_model(file):
|
||||
"""
|
||||
Load previously trained FastDepth model from disk. Will include relevant metrics (custom objects)
|
||||
:param file: File/directory to load the model from
|
||||
:return:
|
||||
"""
|
||||
return keras.models.load_model(file, custom_objects={'delta1_metric': delta1_metric,
|
||||
'delta2_metric': delta2,
|
||||
'delta3_metric': delta3,
|
||||
'dense_depth_loss_function': dense_depth_loss_function})
|
||||
|
||||
@@ -6,15 +6,15 @@ def dense_depth_loss_function(y, y_pred):
|
||||
Implementation of the loss from the dense depth paper https://arxiv.org/pdf/1812.11941.pdf
|
||||
"""
|
||||
# Point-wise L1 loss
|
||||
l_depth = tf.reduce_mean(tf.math.abs(y_pred - y), axis=-1)
|
||||
l1_depth = tf.reduce_mean(tf.math.abs(y_pred - y), axis=-1)
|
||||
|
||||
# L1 loss over image gradients
|
||||
dy, dx = tf.image.image_gradients(y)
|
||||
dy_pred, dx_pred = tf.image.image_gradients(y_pred)
|
||||
l_grad = tf.reduce_mean(tf.math.abs(dy_pred - dy) +
|
||||
gradient = tf.reduce_mean(tf.math.abs(dy_pred - dy) +
|
||||
tf.math.abs(dx_pred - dx), axis=-1)
|
||||
|
||||
# Structural Similarity (SSIM)
|
||||
l_ssim = (1 - tf.image.ssim(y, y_pred, 500)) / 2
|
||||
ssim = (1 - tf.image.ssim(y, y_pred, 500)) / 2
|
||||
|
||||
return 0.1 * tf.reduce_mean(l_depth) + tf.reduce_mean(l_grad) + l_ssim
|
||||
return 0.1 * tf.reduce_mean(l1_depth) + tf.reduce_mean(gradient) + ssim
|
||||
|
||||
16
metric.py
Normal file
16
metric.py
Normal file
@@ -0,0 +1,16 @@
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
def delta1_metric(y_true, y_pred):
|
||||
max_ratio = tf.maximum(y_pred / y_true, y_true / y_pred)
|
||||
return tf.reduce_mean(tf.cast(max_ratio < tf.convert_to_tensor(1.25), tf.float32))
|
||||
|
||||
|
||||
def delta2(y_true, y_pred):
|
||||
max_ratio = tf.maximum(y_pred / y_true, y_true / y_pred)
|
||||
return tf.reduce_mean(tf.cast(max_ratio < tf.convert_to_tensor(1.25 ** 2), tf.float32))
|
||||
|
||||
|
||||
def delta3(y_true, y_pred):
|
||||
max_ratio = tf.maximum(y_pred / y_true, y_true / y_pred)
|
||||
return tf.reduce_mean(tf.cast(max_ratio < tf.convert_to_tensor(1.25 ** 3), tf.float32))
|
||||
@@ -19,10 +19,10 @@ def residual_layer(inputs, out_channels, stride, dropout=None):
|
||||
:param dropout:
|
||||
:return:
|
||||
"""
|
||||
x = layers.Conv2D(out_channels, 3, padding='same', stride=stride)(inputs)
|
||||
x = layers.Conv2D(out_channels, 3, padding='same', strides=stride)(inputs)
|
||||
x = layers.Conv2D(out_channels, 3, padding='same')(x)
|
||||
shortcut = layers.Conv2D(
|
||||
out_channels, 3, padding='same', stride=stride)(inputs)
|
||||
out_channels, 3, padding='same', strides=stride)(inputs)
|
||||
if dropout:
|
||||
shortcut = keras.layers.SpatialDropout2D(dropout)(shortcut)
|
||||
x = keras.layers.Concatenate()([x, shortcut])
|
||||
@@ -46,7 +46,7 @@ def packnet_conv2d(inputs, out_channels, kernel_size, stride):
|
||||
|
||||
|
||||
def packnet_inverse_depth(inputs, out_channels=1, min_depth=0.5):
|
||||
x = packnet_conv2d(inputs, out_channels, kernel_size=3, stride=1)
|
||||
x = layers.Conv2D(out_channels, 3, padding='same')(inputs)
|
||||
return keras.activations.sigmoid(x) / min_depth
|
||||
|
||||
|
||||
@@ -64,7 +64,7 @@ def pack_3d(inputs, kernel_size, r=2, features_3d=8):
|
||||
x = tf.expand_dims(x, 4)
|
||||
x = keras.layers.Conv3D(features_3d, kernel_size=3, padding='same')(x)
|
||||
b, h, w, c, d = x.shape
|
||||
x = tf.reshape(x, (b, h, w, c * d))
|
||||
x = keras.layers.Reshape((h, w, c * d))(x)
|
||||
return packnet_conv2d(x, inputs.shape[3], kernel_size, 1)
|
||||
|
||||
|
||||
@@ -74,7 +74,7 @@ def unpack_3d(inputs, out_channels, kernel_size, r=2, features_3d=8):
|
||||
x = tf.expand_dims(x, 4) # B x H/2 x W/2 x 4(out)/D x D
|
||||
x = keras.layers.Conv3D(features_3d, kernel_size=3, padding='same')(x)
|
||||
b, h, w, c, d = x.shape
|
||||
x = tf.reshape(x, [b, h, w, c * d])
|
||||
x = keras.layers.Reshape([h, w, c * d])(x)
|
||||
return nn.depth_to_space(x, r)
|
||||
|
||||
|
||||
@@ -92,7 +92,7 @@ def make_packnet(shape=(224, 224, 3), skip_add=True, features_3d=4, dropout=None
|
||||
input = keras.layers.Input(shape=shape)
|
||||
x = packnet_conv2d(input, 32, 5, 1)
|
||||
skip_1 = x
|
||||
x = packnet_conv2d(x, 32, 7, 1)
|
||||
x = packnet_conv2d(x, 64, 7, 1)
|
||||
x = pack_3d(x, 5, features_3d=features_3d)
|
||||
skip_2 = x
|
||||
x = residual_block(x, 64, 2, 1, dropout)
|
||||
@@ -108,24 +108,43 @@ def make_packnet(shape=(224, 224, 3), skip_add=True, features_3d=4, dropout=None
|
||||
x = pack_3d(x, 3, features_3d=features_3d)
|
||||
# ================ ENCODER =================
|
||||
|
||||
# ================ DECODER =================
|
||||
# layer 7
|
||||
x = unpack_3d(x, 512, 3, features_3d=features_3d)
|
||||
x = keras.layers.Add(
|
||||
[x, skip_5]) if skip_add else keras.layers.Concatenate([x, skip_5])
|
||||
x = keras.layers.Add()(
|
||||
[x, skip_5]) if skip_add else keras.layers.Concatenate()([x, skip_5])
|
||||
x = packnet_conv2d(x, 512, 3, 1)
|
||||
# layer 8
|
||||
x = unpack_3d(x, 256, 3, features_3d=features_3d)
|
||||
x = keras.layers.Add(
|
||||
[x, skip_4]) if skip_add else keras.layers.Concatenate([x, skip_4])
|
||||
x = keras.layers.Add()(
|
||||
[x, skip_4]) if skip_add else keras.layers.Concatenate()([x, skip_4])
|
||||
x = packnet_conv2d(x, 256, 3, 1)
|
||||
# TODO: This is wrong, look at the paper
|
||||
layer_8 = x
|
||||
# layer 9
|
||||
x = packnet_inverse_depth(x, 1)
|
||||
x = keras.layers.UpSampling2D()
|
||||
|
||||
# TODO: Skip connection
|
||||
if skip_add:
|
||||
x = keras.layers.Add([x, ])
|
||||
else:
|
||||
x = keras.layers.Concatenate([x, ])
|
||||
|
||||
x = packnet_conv2d(x, 32, 3, 1)
|
||||
# layer 10
|
||||
u_layer_8 = unpack_3d(layer_8, 128, 3, features_3d=features_3d)
|
||||
x = keras.layers.UpSampling2D()(x)
|
||||
x = keras.layers.Add()([u_layer_8, skip_3, x]) if skip_add else keras.layers.Concatenate()([u_layer_8, skip_3, x])
|
||||
x = packnet_conv2d(x, 128, 3, 1)
|
||||
layer_10 = x
|
||||
# layer 11
|
||||
x = packnet_inverse_depth(x, 1)
|
||||
# layer 12
|
||||
u_layer_10 = unpack_3d(layer_10, 64, 3, features_3d=features_3d)
|
||||
x = keras.layers.UpSampling2D()(x)
|
||||
x = keras.layers.Add()([u_layer_10, skip_2, x]) if skip_add else keras.layers.Concatenate()([u_layer_10, skip_2, x])
|
||||
x = packnet_conv2d(x, 64, 3, 1)
|
||||
layer_12 = x
|
||||
# layer 13
|
||||
x = packnet_inverse_depth(x)
|
||||
# layer 14
|
||||
u_layer_12 = unpack_3d(layer_12, 32, 3, features_3d=features_3d)
|
||||
x = keras.layers.UpSampling2D()(x)
|
||||
x = keras.layers.Add()([u_layer_12, skip_1, x]) if skip_add else keras.layers.Concatenate()([u_layer_12, skip_1, x])
|
||||
x = packnet_conv2d(x, 32, 3, 1)
|
||||
# layer 15
|
||||
x = packnet_inverse_depth(x)
|
||||
# ================ DECODER =================
|
||||
|
||||
return keras.Model(inputs=input, outputs=x, name="PackNet")
|
||||
|
||||
@@ -28,6 +28,10 @@ class PacknetTests(unittest.TestCase):
|
||||
# TODO: Anything else we can test here for validity?
|
||||
self.assertEqual(y.shape, out_shape)
|
||||
|
||||
def test_packnet(self):
|
||||
packnet = p.make_packnet()
|
||||
self.assertIsNotNone(packnet)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
||||
49
train.py
Normal file
49
train.py
Normal file
@@ -0,0 +1,49 @@
|
||||
"""
|
||||
Collection of functions to train the various models, and use different losses
|
||||
"""
|
||||
import tensorflow.keras as keras
|
||||
|
||||
from load import load_nyu
|
||||
from metric import *
|
||||
|
||||
|
||||
def compile(model, optimiser=keras.optimizers.SGD(), loss=keras.losses.MeanSquaredError(), custom_metrics=None):
|
||||
"""
|
||||
Compile FastDepth model with relevant metrics
|
||||
:param model: Model to compile
|
||||
:param optimiser: Custom optimiser to use
|
||||
:param loss: Loss function to use
|
||||
:param include_metrics: Whether to include metrics (RMSE, MSE, a1,2,3)
|
||||
"""
|
||||
model.compile(optimizer=optimiser,
|
||||
loss=loss,
|
||||
metrics=[keras.metrics.RootMeanSquaredError(),
|
||||
keras.metrics.MeanSquaredError(),
|
||||
delta1_metric,
|
||||
delta2,
|
||||
delta3,
|
||||
keras.metrics.MeanAbsolutePercentageError(),
|
||||
keras.metrics.MeanAbsoluteError()] if custom_metrics is None else custom_metrics)
|
||||
|
||||
|
||||
def train(existing_model=None, pretrained_weights='imagenet', epochs=4, save_file=None, dataset=None,
|
||||
checkpoint='ckpt'):
|
||||
"""
|
||||
Compile, train and save (if a save file is specified) a Fast Depth model.
|
||||
:param existing_model: Existing FastDepth model to train. None will create
|
||||
:param pretrained_weights: Weights to use if existing_model is not specified. See keras.applications.MobileNet
|
||||
weights parameter for options here.
|
||||
:param epochs: Number of epochs to run for
|
||||
:param save_file: File/directory to save to after training. By default the model won't be saved
|
||||
:param dataset: Train dataset to use. By default will DOWNLOAD and use tensorflow nyu_v2 dataset
|
||||
:param checkpoint: Checkpoint to save to
|
||||
"""
|
||||
callbacks = []
|
||||
if checkpoint:
|
||||
callbacks.append(keras.callbacks.ModelCheckpoint(checkpoint, save_weights_only=True))
|
||||
if not dataset:
|
||||
dataset = load_nyu()
|
||||
existing_model.fit(dataset, epochs=epochs, callbacks=callbacks)
|
||||
if save_file:
|
||||
existing_model.save(save_file)
|
||||
return existing_model
|
||||
4
util.py
4
util.py
@@ -5,9 +5,9 @@ import tensorflow.keras as keras
|
||||
def crop_and_resize(x, out_shape=(224, 224)):
|
||||
shape = tf.shape(x['depth'])
|
||||
img_shape = tf.shape(x['image'])
|
||||
# Ensure we get a square for when we resize is later.
|
||||
# Ensure we get a square for when we resize it later.
|
||||
# For horizontal images this is basically just cropping the sides off
|
||||
center_shape = min(shape[1], shape[2], img_shape[1], img_shape[2])
|
||||
center_shape = tf.minimum(shape[1], tf.minimum(shape[2], tf.minimum(img_shape[1], img_shape[2])))
|
||||
|
||||
def layer():
|
||||
return keras.Sequential([
|
||||
|
||||
Reference in New Issue
Block a user