Format pep8, include pass shaped to mobilenet
This commit is contained in:
@@ -22,7 +22,8 @@ def fix_windows_gpu():
|
||||
for gpu in gpus:
|
||||
tf.config.experimental.set_memory_growth(gpu, True)
|
||||
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
|
||||
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
|
||||
print(len(gpus), "Physical GPUs,", len(
|
||||
logical_gpus), "Logical GPUs")
|
||||
except RuntimeError as e:
|
||||
# Memory growth must be set before GPUs have been initialized
|
||||
print(e)
|
||||
@@ -47,7 +48,8 @@ def mobilenet_nnconv5(weights=None, shape=(224, 224, 3)):
|
||||
:return: FastDepth keras Model
|
||||
"""
|
||||
input = keras.layers.Input(shape=shape)
|
||||
mobilenet = keras.applications.MobileNet(input_tensor=input, include_top=False, weights=weights)
|
||||
mobilenet = keras.applications.MobileNet(
|
||||
input_shape=shape, input_tensor=input, include_top=False, weights=weights)
|
||||
for layer in mobilenet.layers:
|
||||
layer.trainable = True
|
||||
|
||||
@@ -57,13 +59,16 @@ def mobilenet_nnconv5(weights=None, shape=(224, 224, 3)):
|
||||
x = keras.layers.UpSampling2D()(x)
|
||||
x = FDDepthwiseBlock(x, 256, block_id=15)
|
||||
x = keras.layers.UpSampling2D()(x)
|
||||
x = keras.layers.Add()([x, mobilenet.get_layer(name="conv_pw_5_relu").output])
|
||||
x = keras.layers.Add()(
|
||||
[x, mobilenet.get_layer(name="conv_pw_5_relu").output])
|
||||
x = FDDepthwiseBlock(x, 128, block_id=16)
|
||||
x = keras.layers.UpSampling2D()(x)
|
||||
x = keras.layers.Add()([x, mobilenet.get_layer(name="conv_pw_3_relu").output])
|
||||
x = keras.layers.Add()(
|
||||
[x, mobilenet.get_layer(name="conv_pw_3_relu").output])
|
||||
x = FDDepthwiseBlock(x, 64, block_id=17)
|
||||
x = keras.layers.UpSampling2D()(x)
|
||||
x = keras.layers.Add()([x, mobilenet.get_layer(name="conv_pw_1_relu").output])
|
||||
x = keras.layers.Add()(
|
||||
[x, mobilenet.get_layer(name="conv_pw_1_relu").output])
|
||||
x = FDDepthwiseBlock(x, 32, block_id=18)
|
||||
x = keras.layers.UpSampling2D()(x)
|
||||
|
||||
@@ -163,8 +168,10 @@ def crop_and_resize(x):
|
||||
|
||||
def layer():
|
||||
return keras.Sequential([
|
||||
keras.layers.experimental.preprocessing.CenterCrop(shape[1], shape[2]),
|
||||
keras.layers.experimental.preprocessing.Resizing(224, 224, interpolation='nearest')
|
||||
keras.layers.experimental.preprocessing.CenterCrop(
|
||||
shape[1], shape[2]),
|
||||
keras.layers.experimental.preprocessing.Resizing(
|
||||
224, 224, interpolation='nearest')
|
||||
])
|
||||
|
||||
# Reshape label to 4d, can't use array unwrap as it's unsupported by tensorflow
|
||||
|
||||
14
train.ipynb
14
train.ipynb
@@ -15,7 +15,7 @@
|
||||
"orig_nbformat": 2,
|
||||
"kernelspec": {
|
||||
"name": "python3",
|
||||
"display_name": "Python 3.8.8 64-bit",
|
||||
"display_name": "Python 3.8.8 64-bit ('tensorflow2': conda)",
|
||||
"metadata": {
|
||||
"interpreter": {
|
||||
"hash": "ee99f7bd678359d45d92ad289bdab8f6bcfaae579cfd1bff07d2bb16d7ba024f"
|
||||
@@ -70,15 +70,7 @@
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"WARNING:tensorflow:`input_shape` is undefined or non-square, or `rows` is not in [128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the default.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = fd.mobilenet_nnconv5(weights='imagenet')\n",
|
||||
"fd.compile(model)"
|
||||
@@ -102,7 +94,7 @@
|
||||
},
|
||||
{
|
||||
"source": [
|
||||
"## Evaluate the model"
|
||||
"## Evaluate the trained model"
|
||||
],
|
||||
"cell_type": "markdown",
|
||||
"metadata": {}
|
||||
|
||||
Reference in New Issue
Block a user