Add documentation and README, use Upsampling2D rather than image Resizing layer

This commit is contained in:
Piv
2021-03-24 21:35:25 +10:30
parent ac3ab27ddd
commit ab7da5acd4
3 changed files with 166 additions and 33 deletions

86
README.md Normal file
View File

@@ -0,0 +1,86 @@
# Fast Depth TF
Tensorflow 2.0 Implementation of Fast Depth.
Original Implementation in PyTorch is here: https://github.com/dwofk/fast-depth
This code has been tested with Tensorflow 2.4.1, however any version of Tensorflow >2 should work
The model has also been successfully optimised using the OpenVINO model optimiser
## Basic Usage
To train and evaluate the model on the nyu_v2 dataset, simply run:
`python main.py`
WARNING: This will download nyu_v2 which is ~100gb when including archived and extracted files, plus another 70gb for
generated examples.
The following sample demonstrates creating a FastDepth model that can later be used for inference, training or
evaluation.
```python
import fast_depth_functional as fd
# No Pretrained weights
model = fd.mobilenet_nnconv5()
# Imagenet weights
model = fd.mobilenet_nnconv5(weights='imagenet')
# Load trained model from file
model = fd.load_model('my_fastdepth_model')
```
### Train
Training with the NYU dataset is as simple as running the following:
WARNING: This will download ~30gb and extra ~70gb if you haven't downloaded it already. It also takes a long time to
prepare the examples (>1 hour)
```python
import fast_depth_functional as fd
model = fd.mobilenet_nnconv5(weights='imagenet')
# Train then save the model as keras h5 format
fd.train(model, save_file='fast_depth')
# A custom dataset can be passed in if required
fd.train(model, dataset=my_dataset)
```
### Evaluate
Evaluation is similar to training. The nyu dataset validation split will be used by default, and if you trained as shown
above, the dataset will have already been downloaded.
```python
import fast_depth_functional as fd
model = fd.load_model('fast_depth')
fd.compile(model)
fd.evaluate(model)
# A custom dataset for evaluation is supported
fd.evaluate(model, dataset=my_evaluation_dataset)
```
## Troubleshooting
### Windows GPU Fix
If you are using Windows and encounter an error opening cudnn (you should see CUDNN_STATUS_ALLOC_FAILED somewhere before
the error), first check you have correctly installed CUDA toolkit and cuDNN. If you have, then run the Windows GPU fix
included in this repo:
```python
import fast_depth_functional as fd
# Windows GPU Fix
fd.fix_windows_gpu()
```
More information about this error can be found here:
https://forums.developer.nvidia.com/t/could-not-create-cudnn-handle-cudnn-status-alloc-failed/108261

View File

@@ -2,10 +2,22 @@ import tensorflow as tf
import tensorflow.keras as keras import tensorflow.keras as keras
import tensorflow_datasets as tfds import tensorflow_datasets as tfds
"""
Unofficial tensorflow keras implementation of FastDepth (mobilenet_nnconv5).
PyTorch (official) Fast Depth Implementation: https://github.com/dwofk/fast-depth
# Ripped from: https://forums.developer.nvidia.com/t/could-not-create-cudnn-handle-cudnn-status-alloc-failed/108261/4?u=mpivato4 There's also an experimental version that does not use BatchNormalisation, as well as Parametric ReLU and bilinear
upsampling (mobilenet_nnconv5_no_bn)
"""
# Ripped from:
# https://forums.developer.nvidia.com/t/could-not-create-cudnn-handle-cudnn-status-alloc-failed/108261/4?u=mpivato4
# Seems to be an issue on windows so explicitly set gpu growth # Seems to be an issue on windows so explicitly set gpu growth
def fix_windows_gpu(): def fix_windows_gpu():
"""
Fixes Windows GPU bug when attempting to allocate memory using cuDNN
"""
gpus = tf.config.experimental.list_physical_devices('GPU') gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus: if gpus:
try: try:
@@ -19,11 +31,6 @@ def fix_windows_gpu():
print(e) print(e)
'''
Functional version of fastdepth model
'''
def FDDepthwiseBlock(inputs, def FDDepthwiseBlock(inputs,
out_channels, out_channels,
block_id=1): block_id=1):
@@ -35,14 +42,13 @@ def FDDepthwiseBlock(inputs,
return keras.layers.ReLU(6., name='conv_pw_%d_relu' % block_id)(x) return keras.layers.ReLU(6., name='conv_pw_%d_relu' % block_id)(x)
def FDDepthwiseBlockNoBN(inputs, out_channels, block_id=1): def mobilenet_nnconv5(weights=None, shape=(224, 224, 3)):
x = keras.layers.DepthwiseConv2D(5, padding='same')(inputs) """
x = keras.layers.ReLU(6.)(x) Replication of the FastDepth model in Tensorflow, using the keras Functional API
x = keras.layers.Conv2D(out_channels, 1, padding='same')(x) :param weights: Pretrained weights for MobileNet, defaults to None
return keras.layers.ReLU(6., name='conv_pw_%d_relu' % block_id)(x) :param shape: Input shape of the image, defaults to (224, 224, 3)
:return: FastDepth keras Model
"""
def make_mobilenet_nnconv5(weights=None, shape=(224, 224, 3)):
input = keras.layers.Input(shape=shape) input = keras.layers.Input(shape=shape)
mobilenet = keras.applications.MobileNet(input_tensor=input, include_top=False, weights=weights) mobilenet = keras.applications.MobileNet(input_tensor=input, include_top=False, weights=weights)
for layer in mobilenet.layers: for layer in mobilenet.layers:
@@ -50,21 +56,19 @@ def make_mobilenet_nnconv5(weights=None, shape=(224, 224, 3)):
# Fast depth decoder # Fast depth decoder
x = FDDepthwiseBlock(mobilenet.output, 512, block_id=14) x = FDDepthwiseBlock(mobilenet.output, 512, block_id=14)
# TODO: Bilinear interpolation
# x = keras.layers.experimental.preprocessing.Resizing(14, 14, interpolation='bilinear')
# Nearest neighbour interpolation, used by fast depth paper # Nearest neighbour interpolation, used by fast depth paper
x = keras.layers.experimental.preprocessing.Resizing(14, 14, interpolation='nearest')(x) x = keras.layers.UpSampling2D()(x)
x = FDDepthwiseBlock(x, 256, block_id=15) x = FDDepthwiseBlock(x, 256, block_id=15)
x = keras.layers.experimental.preprocessing.Resizing(28, 28, interpolation='nearest')(x) x = keras.layers.UpSampling2D()(x)
x = keras.layers.Add()([x, mobilenet.get_layer(name="conv_pw_5_relu").output]) x = keras.layers.Add()([x, mobilenet.get_layer(name="conv_pw_5_relu").output])
x = FDDepthwiseBlock(x, 128, block_id=16) x = FDDepthwiseBlock(x, 128, block_id=16)
x = keras.layers.experimental.preprocessing.Resizing(56, 56, interpolation='nearest')(x) x = keras.layers.UpSampling2D()(x)
x = keras.layers.Add()([x, mobilenet.get_layer(name="conv_pw_3_relu").output]) x = keras.layers.Add()([x, mobilenet.get_layer(name="conv_pw_3_relu").output])
x = FDDepthwiseBlock(x, 64, block_id=17) x = FDDepthwiseBlock(x, 64, block_id=17)
x = keras.layers.experimental.preprocessing.Resizing(112, 112, interpolation='nearest')(x) x = keras.layers.UpSampling2D()(x)
x = keras.layers.Add()([x, mobilenet.get_layer(name="conv_pw_1_relu").output]) x = keras.layers.Add()([x, mobilenet.get_layer(name="conv_pw_1_relu").output])
x = FDDepthwiseBlock(x, 32, block_id=18) x = FDDepthwiseBlock(x, 32, block_id=18)
x = keras.layers.experimental.preprocessing.Resizing(224, 224, interpolation='nearest')(x) x = keras.layers.UpSampling2D()(x)
x = keras.layers.Conv2D(1, 1, padding='same')(x) x = keras.layers.Conv2D(1, 1, padding='same')(x)
x = keras.layers.BatchNormalization()(x) x = keras.layers.BatchNormalization()(x)
@@ -72,7 +76,25 @@ def make_mobilenet_nnconv5(weights=None, shape=(224, 224, 3)):
return keras.Model(inputs=input, outputs=x, name="fast_depth") return keras.Model(inputs=input, outputs=x, name="fast_depth")
def make_mobilenet_nnconv5_no_bn(weights=None, shape=(224, 224, 3)): #### Experimental ####
def FDDepthwiseBlockNoBN(inputs, out_channels, block_id=1):
x = keras.layers.DepthwiseConv2D(5, padding='same')(inputs)
x = keras.layers.PReLU()(x)
x = keras.layers.Conv2D(out_channels, 1, padding='same')(x)
return keras.layers.PReLU(name='conv_pw_%d_relu' % block_id)(x)
def mobilenet_nnconv5_no_bn(weights=None, shape=(224, 224, 3)):
"""
Experimental version of the FastDepth model.
This version has the following changes:
- Bilinear upsampling is used rather than nearest neighbour
- No BatchNormalisation in decoder
- Parametric ReLU in Decoder rather than ReLU
:param weights: Pretrained weights for MobileNet, defaults to None
:param shape: Input shape of the image, defaults to (224, 224, 3)
:return: Experimental FastDepth keras Model
"""
input = keras.layers.Input(shape=shape) input = keras.layers.Input(shape=shape)
mobilenet = keras.applications.MobileNet(input_tensor=input, include_top=False, weights=weights) mobilenet = keras.applications.MobileNet(input_tensor=input, include_top=False, weights=weights)
for layer in mobilenet.layers: for layer in mobilenet.layers:
@@ -80,26 +102,24 @@ def make_mobilenet_nnconv5_no_bn(weights=None, shape=(224, 224, 3)):
# Fast depth decoder # Fast depth decoder
x = FDDepthwiseBlockNoBN(mobilenet.output, 512, block_id=14) x = FDDepthwiseBlockNoBN(mobilenet.output, 512, block_id=14)
# Nearest neighbour interpolation, used by fast depth paper x = keras.layers.UpSampling2D(interpolation='bilinear')(x)
x = keras.layers.experimental.preprocessing.Resizing(14, 14, interpolation='bilinear')(x)
x = FDDepthwiseBlockNoBN(x, 256, block_id=15) x = FDDepthwiseBlockNoBN(x, 256, block_id=15)
x = keras.layers.experimental.preprocessing.Resizing(28, 28, interpolation='bilinear')(x) x = keras.layers.UpSampling2D(interpolation='bilinear')(x)
x = keras.layers.Add()([x, mobilenet.get_layer(name="conv_pw_5_relu").output]) x = keras.layers.Add()([x, mobilenet.get_layer(name="conv_pw_5_relu").output])
x = FDDepthwiseBlockNoBN(x, 128, block_id=16) x = FDDepthwiseBlockNoBN(x, 128, block_id=16)
x = keras.layers.experimental.preprocessing.Resizing(56, 56, interpolation='bilinear')(x) x = keras.layers.UpSampling2D(interpolation='bilinear')(x)
x = keras.layers.Add()([x, mobilenet.get_layer(name="conv_pw_3_relu").output]) x = keras.layers.Add()([x, mobilenet.get_layer(name="conv_pw_3_relu").output])
x = FDDepthwiseBlockNoBN(x, 64, block_id=17) x = FDDepthwiseBlockNoBN(x, 64, block_id=17)
x = keras.layers.experimental.preprocessing.Resizing(112, 112, interpolation='bilinear')(x) x = keras.layers.UpSampling2D(interpolation='bilinear')(x)
x = keras.layers.Add()([x, mobilenet.get_layer(name="conv_pw_1_relu").output]) x = keras.layers.Add()([x, mobilenet.get_layer(name="conv_pw_1_relu").output])
x = FDDepthwiseBlockNoBN(x, 32, block_id=18) x = FDDepthwiseBlockNoBN(x, 32, block_id=18)
x = keras.layers.experimental.preprocessing.Resizing(224, 224, interpolation='bilinear')(x) x = keras.layers.UpSampling2D(interpolation='bilinear')(x)
x = keras.layers.Conv2D(1, 1, padding='same')(x) x = keras.layers.Conv2D(1, 1, padding='same')(x)
x = keras.layers.ReLU(6.)(x) x = keras.layers.PReLU()(x)
return keras.Model(inputs=input, outputs=x, name="fast_depth") return keras.Model(inputs=input, outputs=x, name="fast_depth_experimental")
# TODO: Fix these, float doesn't work same as pytorch
def delta1_metric(y_true, y_pred): def delta1_metric(y_true, y_pred):
maxRatio = tf.maximum(y_pred / y_true, y_true / y_pred) maxRatio = tf.maximum(y_pred / y_true, y_true / y_pred)
return tf.nn.moments(tf.cast(maxRatio < tf.convert_to_tensor(1.25), tf.float32), axes=None)[0] return tf.nn.moments(tf.cast(maxRatio < tf.convert_to_tensor(1.25), tf.float32), axes=None)[0]
@@ -116,6 +136,10 @@ def delta3_metric(y_true, y_pred):
def compile(model): def compile(model):
"""
Compile FastDepth model with relevant metrics
:param model: Model to compile
"""
# TODO: Learning rate (exponential decay) # TODO: Learning rate (exponential decay)
model.compile(optimizer=keras.optimizers.SGD(momentum=0.9), model.compile(optimizer=keras.optimizers.SGD(momentum=0.9),
loss=keras.losses.MeanSquaredError(), loss=keras.losses.MeanSquaredError(),
@@ -127,8 +151,17 @@ def compile(model):
def train(existing_model=None, pretrained_weights='imagenet', epochs=4, save_file=None, dataset=None): def train(existing_model=None, pretrained_weights='imagenet', epochs=4, save_file=None, dataset=None):
"""
Compile, train and save (if a save file is specified) a Fast Depth model.
:param existing_model: Existing FastDepth model to train. None will create
:param pretrained_weights: Weights to use if existing_model is not specified. See keras.applications.MobileNet
weights parameter for options here.
:param epochs: Number of epochs to run for
:param save_file: File/directory to save to after training. By default the model won't be saved
:param dataset: Train dataset to use. By default will DOWNLOAD and use tensorflow nyu_v2 dataset
"""
if not existing_model: if not existing_model:
existing_model = make_mobilenet_nnconv5(pretrained_weights) existing_model = mobilenet_nnconv5(pretrained_weights)
compile(existing_model) compile(existing_model)
if not dataset: if not dataset:
dataset = load_nyu() dataset = load_nyu()
@@ -162,6 +195,11 @@ def forward(model, image):
def load_model(file): def load_model(file):
"""
Load previously trained FastDepth model from disk. Will include relevant metrics (custom objects)
:param file: File/directory to load the model from
:return:
"""
return keras.models.load_model(file, custom_objects={'delta1_metric': delta1_metric, return keras.models.load_model(file, custom_objects={'delta1_metric': delta1_metric,
'delta2_metric': delta2_metric, 'delta2_metric': delta2_metric,
'delta3_metric': delta3_metric}) 'delta3_metric': delta3_metric})
@@ -181,6 +219,10 @@ def crop_and_resize(x):
def load_nyu(): def load_nyu():
"""
Load the nyu_v2 dataset train split. Will be downloaded to ../nyu
:return: nyu_v2 dataset builder
"""
builder = tfds.builder('nyu_depth_v2') builder = tfds.builder('nyu_depth_v2')
builder.download_and_prepare(download_dir='../nyu') builder.download_and_prepare(download_dir='../nyu')
return builder \ return builder \
@@ -191,6 +233,10 @@ def load_nyu():
def load_nyu_evaluate(): def load_nyu_evaluate():
"""
Load the nyu_v2 dataset validation split. Will be downloaded to ../nyu
:return: nyu_v2 dataset builder
"""
builder = tfds.builder('nyu_depth_v2') builder = tfds.builder('nyu_depth_v2')
builder.download_and_prepare(download_dir='../nyu') builder.download_and_prepare(download_dir='../nyu')
return builder.as_dataset(split='validation').batch(1).map(lambda x: crop_and_resize(x)) return builder.as_dataset(split='validation').batch(1).map(lambda x: crop_and_resize(x))

View File

@@ -2,6 +2,7 @@ import fast_depth_functional as fd
if __name__ == '__main__': if __name__ == '__main__':
fd.fix_windows_gpu() fd.fix_windows_gpu()
model = fd.load_model('fast_depth_nyu_v2_224_224_3_e1') model = fd.mobilenet_nnconv5_no_bn(weights='imagenet')
fd.compile(model) fd.compile(model)
fd.train(existing_model=model, save_file='../fast-depth-experimental')
fd.evaluate(model) fd.evaluate(model)