Add pixel loss functions, move warp
This commit is contained in:
@@ -4,7 +4,6 @@ Trainer to learn depth information on unlabeled data (raw images/videos)
|
||||
Allows pluggable depth networks for differing performance (including fast-depth)
|
||||
"""
|
||||
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras as keras
|
||||
|
||||
|
||||
@@ -17,23 +16,5 @@ class SFMLearner(keras.Model):
|
||||
pass
|
||||
|
||||
|
||||
def projective_inverse_warp(depth, pose, t_img, s_imgs, intrinsics):
|
||||
'''
|
||||
SFM Learner inverse warp step
|
||||
ps ~ K.T(t->s).Dt(pt).K^-1.pt
|
||||
|
||||
projected source pixel
|
||||
'''
|
||||
pass
|
||||
|
||||
|
||||
def bilinear_sample(projected_coords, s_img):
|
||||
'''
|
||||
Sample the 4 closest pixels in the source image via the projected coordinates
|
||||
to get the source image warped to the target image
|
||||
'''
|
||||
pass
|
||||
|
||||
|
||||
def make_sfm_learner_pose_net(input_shape=(224, 224, 3)):
|
||||
pass
|
||||
|
||||
Reference in New Issue
Block a user