Add pixel loss functions, move warp
This commit is contained in:
@@ -4,7 +4,6 @@ Trainer to learn depth information on unlabeled data (raw images/videos)
|
||||
Allows pluggable depth networks for differing performance (including fast-depth)
|
||||
"""
|
||||
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras as keras
|
||||
|
||||
|
||||
@@ -17,23 +16,5 @@ class SFMLearner(keras.Model):
|
||||
pass
|
||||
|
||||
|
||||
def projective_inverse_warp(depth, pose, t_img, s_imgs, intrinsics):
|
||||
'''
|
||||
SFM Learner inverse warp step
|
||||
ps ~ K.T(t->s).Dt(pt).K^-1.pt
|
||||
|
||||
projected source pixel
|
||||
'''
|
||||
pass
|
||||
|
||||
|
||||
def bilinear_sample(projected_coords, s_img):
|
||||
'''
|
||||
Sample the 4 closest pixels in the source image via the projected coordinates
|
||||
to get the source image warped to the target image
|
||||
'''
|
||||
pass
|
||||
|
||||
|
||||
def make_sfm_learner_pose_net(input_shape=(224, 224, 3)):
|
||||
pass
|
||||
|
||||
15
unsupervised/warp.py
Normal file
15
unsupervised/warp.py
Normal file
@@ -0,0 +1,15 @@
|
||||
def projective_inverse_warp(target_img, source_img, depth, pose, intrinsics):
|
||||
"""
|
||||
Calculate the reprojected image from the source to the target, based on the given depth, pose and intrinsics
|
||||
|
||||
SFM Learner inverse warp step
|
||||
ps ~ K.T(t->s).Dt(pt).K^-1.pt
|
||||
|
||||
:param target_img: Tensor (batch, height, width, 3)
|
||||
:param source_img: Tensor, same shape as target_img
|
||||
:param depth: Tensor, (batch, height, width, 1)
|
||||
:param pose: (batch, 3, 3)
|
||||
:param intrinsics: (batch, 3, 3)
|
||||
:return: The source image reprojected to the target
|
||||
"""
|
||||
pass
|
||||
Reference in New Issue
Block a user