Start adding pose warp conversions
This commit is contained in:
@@ -1,3 +1,77 @@
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
def euler_to_rotation_matrix(x, y, z):
|
||||
"""
|
||||
|
||||
:param x: Tensor of shape (B, 1) - x axis rotation
|
||||
:param y: Tensor of shape (B, 1) - y axis rotation
|
||||
:param z: Tensor of shape (B, 1) - z axis rotation
|
||||
:return: Rotation matrix for the given euler anglers, in the order rotation(x).rotation(y).rotation(z)
|
||||
"""
|
||||
B = tf.shape(z)[0]
|
||||
|
||||
# Euler angles should be between -pi and pi, clip so the pose network is coerced to this range
|
||||
z = tf.clip_by_value(z, -np.pi, np.pi)
|
||||
y = tf.clip_by_value(y, -np.pi, np.pi)
|
||||
x = tf.clip_by_value(x, -np.pi, np.pi)
|
||||
|
||||
# Expand to B x 1 x 1
|
||||
z = tf.expand_dims(tf.expand_dims(z, -1), -1)
|
||||
y = tf.expand_dims(tf.expand_dims(y, -1), -1)
|
||||
x = tf.expand_dims(tf.expand_dims(x, -1), -1)
|
||||
|
||||
zeros = tf.zeros([B, 1, 1])
|
||||
ones = tf.ones([B, 1, 1])
|
||||
|
||||
cosx = tf.cos(x)
|
||||
sinx = tf.sin(x)
|
||||
rotx_1 = tf.concat([ones, zeros, zeros], axis=3)
|
||||
rotx_2 = tf.concat([zeros, cosx, -sinx], axis=3)
|
||||
rotx_3 = tf.concat([zeros, sinx, cosx], axis=3)
|
||||
xmat = tf.concat([rotx_1, rotx_2, rotx_3], axis=2)
|
||||
|
||||
cosz = tf.cos(z)
|
||||
sinz = tf.sin(z)
|
||||
rotz_1 = tf.concat([cosz, -sinz, zeros], axis=3)
|
||||
rotz_2 = tf.concat([sinz, cosz, zeros], axis=3)
|
||||
rotz_3 = tf.concat([zeros, zeros, ones], axis=3)
|
||||
zmat = tf.concat([rotz_1, rotz_2, rotz_3], axis=2)
|
||||
|
||||
cosy = tf.cos(y)
|
||||
siny = tf.sin(y)
|
||||
roty_1 = tf.concat([cosy, zeros, siny], axis=3)
|
||||
roty_2 = tf.concat([zeros, ones, zeros], axis=3)
|
||||
roty_3 = tf.concat([-siny, zeros, cosy], axis=3)
|
||||
ymat = tf.concat([roty_1, roty_2, roty_3], axis=2)
|
||||
|
||||
rotMat = tf.matmul(tf.matmul(xmat, ymat), zmat)
|
||||
return rotMat
|
||||
|
||||
|
||||
def pose_vec2mat(vec):
|
||||
"""Converts 6DoF parameters to transformation matrix
|
||||
Args:
|
||||
vec: 6DoF parameters in the order of tx, ty, tz, rx, ry, rz -- [B, 6]
|
||||
Returns:
|
||||
A transformation matrix -- [B, 4, 4]
|
||||
"""
|
||||
batch_size, _ = vec.get_shape().as_list()
|
||||
translation = tf.slice(vec, [0, 0], [-1, 3])
|
||||
translation = tf.expand_dims(translation, -1)
|
||||
rx = tf.slice(vec, [0, 3], [-1, 1])
|
||||
ry = tf.slice(vec, [0, 4], [-1, 1])
|
||||
rz = tf.slice(vec, [0, 5], [-1, 1])
|
||||
rot_mat = euler_to_rotation_matrix(rx, ry, rz)
|
||||
rot_mat = tf.squeeze(rot_mat, axis=[1])
|
||||
filler = tf.constant([0.0, 0.0, 0.0, 1.0], shape=[1, 1, 4])
|
||||
filler = tf.tile(filler, [batch_size, 1, 1])
|
||||
transform_mat = tf.concat([rot_mat, translation], axis=2)
|
||||
transform_mat = tf.concat([transform_mat, filler], axis=1)
|
||||
return transform_mat
|
||||
|
||||
|
||||
def projective_inverse_warp(target_img, source_img, depth, pose, intrinsics):
|
||||
"""
|
||||
Calculate the reprojected image from the source to the target, based on the given depth, pose and intrinsics
|
||||
@@ -12,8 +86,19 @@ def projective_inverse_warp(target_img, source_img, depth, pose, intrinsics):
|
||||
:param target_img: Tensor (batch, height, width, 3)
|
||||
:param source_img: Tensor, same shape as target_img
|
||||
:param depth: Tensor, (batch, height, width, 1)
|
||||
:param pose: (batch, 3, 3)
|
||||
:param pose: (batch, 6)
|
||||
:param intrinsics: (batch, 3, 3)
|
||||
:return: The source image reprojected to the target
|
||||
"""
|
||||
# Convert pose vector (output of pose net) to pose matrix (4x4)
|
||||
|
||||
# Convert intrinsics matrix (3x3) to (4x4) so it can be multiplied by the pose net
|
||||
intrinsics_4x4 =
|
||||
|
||||
# Calculate inverse of the 4x4 intrinsics matrix
|
||||
tf.linalg.inv()
|
||||
|
||||
# Create grid of homogenous coordinates
|
||||
|
||||
#
|
||||
pass
|
||||
|
||||
Reference in New Issue
Block a user