Add euler to rotation matrix, grid flattening
This commit is contained in:
@@ -3,7 +3,9 @@ Utils to load and split image/video data.
|
||||
"""
|
||||
|
||||
from __future__ import division
|
||||
|
||||
import math
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
@@ -36,7 +38,7 @@ def euler2mat(z, y, x):
|
||||
cosz = tf.cos(z)
|
||||
sinz = tf.sin(z)
|
||||
rotz_1 = tf.concat([cosz, -sinz, zeros], axis=3)
|
||||
rotz_2 = tf.concat([sinz, cosz, zeros], axis=3)
|
||||
rotz_2 = tf.concat([sinz, cosz, zeros], axis=3)
|
||||
rotz_3 = tf.concat([zeros, zeros, ones], axis=3)
|
||||
zmat = tf.concat([rotz_1, rotz_2, rotz_3], axis=2)
|
||||
|
||||
@@ -58,6 +60,49 @@ def euler2mat(z, y, x):
|
||||
return rotMat
|
||||
|
||||
|
||||
def euler2mat_noNDim(x, y, z):
|
||||
"""
|
||||
|
||||
:param x: Tensor of shape (B, 1) - x axis rotation
|
||||
:param y: Tensor of shape (B, 1) - y axis rotation
|
||||
:param z: Tensor of shape (B, 1) - z axis rotation
|
||||
:return: Rotation matrix for the given euler anglers, in the order rotation(x).rotation(y).rotation(z)
|
||||
"""
|
||||
batch_size = tf.shape(z)[0]
|
||||
|
||||
# Euler angles should be between -pi and pi, clip so the pose network is coerced to this range
|
||||
z = tf.clip_by_value(z, -math.pi, math.pi)
|
||||
y = tf.clip_by_value(y, -math.pi, math.pi)
|
||||
x = tf.clip_by_value(x, -math.pi, math.pi)
|
||||
|
||||
zeros = tf.zeros([batch_size, 1])
|
||||
ones = tf.ones([batch_size, 1])
|
||||
|
||||
cosx = tf.cos(x)
|
||||
sinx = tf.sin(x)
|
||||
rotx_1 = tf.concat([ones, zeros, zeros], axis=1)
|
||||
rotx_2 = tf.concat([zeros, cosx, -sinx], axis=1)
|
||||
rotx_3 = tf.concat([zeros, sinx, cosx], axis=1)
|
||||
xmat = tf.reshape(tf.concat([rotx_1, rotx_2, rotx_3], axis=1), [batch_size, 3, 3])
|
||||
|
||||
cosz = tf.cos(z)
|
||||
sinz = tf.sin(z)
|
||||
rotz_1 = tf.concat([cosz, -sinz, zeros], axis=1)
|
||||
rotz_2 = tf.concat([sinz, cosz, zeros], axis=1)
|
||||
rotz_3 = tf.concat([zeros, zeros, ones], axis=1)
|
||||
zmat = tf.reshape(tf.concat([rotz_1, rotz_2, rotz_3], axis=1), [batch_size, 3, 3])
|
||||
|
||||
cosy = tf.cos(y)
|
||||
siny = tf.sin(y)
|
||||
roty_1 = tf.concat([cosy, zeros, siny], axis=1)
|
||||
roty_2 = tf.concat([zeros, ones, zeros], axis=1)
|
||||
roty_3 = tf.concat([-siny, zeros, cosy], axis=1)
|
||||
ymat = tf.reshape(tf.concat([roty_1, roty_2, roty_3], axis=1), [batch_size, 3, 3])
|
||||
|
||||
rotMat = tf.matmul(tf.matmul(zmat, ymat), xmat)
|
||||
return rotMat
|
||||
|
||||
|
||||
def pose_vec2mat(vec):
|
||||
"""Converts 6DoF parameters to transformation matrix
|
||||
Args:
|
||||
@@ -281,6 +326,7 @@ def bilinear_sampler(imgs, coords):
|
||||
])
|
||||
return output
|
||||
|
||||
|
||||
# Spatial transformer network bilinear sampler, taken from https://github.com/kevinzakka/spatial-transformer-network/blob/master/stn/transformer.py
|
||||
|
||||
|
||||
@@ -309,8 +355,8 @@ def stn_bilinear_sampler(img, x, y):
|
||||
# rescale x and y to [0, W-1/H-1]
|
||||
x = tf.cast(x, 'float32')
|
||||
y = tf.cast(y, 'float32')
|
||||
x = 0.5 * ((x + 1.0) * tf.cast(max_x-1, 'float32'))
|
||||
y = 0.5 * ((y + 1.0) * tf.cast(max_y-1, 'float32'))
|
||||
x = 0.5 * ((x + 1.0) * tf.cast(max_x - 1, 'float32'))
|
||||
y = 0.5 * ((y + 1.0) * tf.cast(max_y - 1, 'float32'))
|
||||
|
||||
# grab 4 nearest corner points for each (x_i, y_i)
|
||||
x0 = tf.cast(tf.floor(x), 'int32')
|
||||
@@ -337,10 +383,10 @@ def stn_bilinear_sampler(img, x, y):
|
||||
y1 = tf.cast(y1, 'float32')
|
||||
|
||||
# calculate deltas
|
||||
wa = (x1-x) * (y1-y)
|
||||
wb = (x1-x) * (y-y0)
|
||||
wc = (x-x0) * (y1-y)
|
||||
wd = (x-x0) * (y-y0)
|
||||
wa = (x1 - x) * (y1 - y)
|
||||
wb = (x1 - x) * (y - y0)
|
||||
wc = (x - x0) * (y1 - y)
|
||||
wd = (x - x0) * (y - y0)
|
||||
|
||||
# add dimension for addition
|
||||
wa = tf.expand_dims(wa, axis=3)
|
||||
@@ -349,6 +395,6 @@ def stn_bilinear_sampler(img, x, y):
|
||||
wd = tf.expand_dims(wd, axis=3)
|
||||
|
||||
# compute output
|
||||
out = tf.add_n([wa*Ia, wb*Ib, wc*Ic, wd*Id])
|
||||
out = tf.add_n([wa * Ia, wb * Ib, wc * Ic, wd * Id])
|
||||
|
||||
return out
|
||||
@@ -1,53 +1,42 @@
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
def euler_to_rotation_matrix(x, y, z):
|
||||
def euler_to_matrix(x, y, z):
|
||||
"""
|
||||
|
||||
:param x: Tensor of shape (B, 1) - x axis rotation
|
||||
:param y: Tensor of shape (B, 1) - y axis rotation
|
||||
:param z: Tensor of shape (B, 1) - z axis rotation
|
||||
:return: Rotation matrix for the given euler anglers, in the order rotation(x).rotation(y).rotation(z)
|
||||
:return: Rotation matrix for the given euler anglers, in the order rotation(x) -> rotation(y) -> rotation(z)
|
||||
"""
|
||||
B = tf.shape(z)[0]
|
||||
batch_size = tf.shape(z)[0]
|
||||
|
||||
# Euler angles should be between -pi and pi, clip so the pose network is coerced to this range
|
||||
z = tf.clip_by_value(z, -np.pi, np.pi)
|
||||
y = tf.clip_by_value(y, -np.pi, np.pi)
|
||||
x = tf.clip_by_value(x, -np.pi, np.pi)
|
||||
|
||||
# Expand to B x 1 x 1
|
||||
z = tf.expand_dims(tf.expand_dims(z, -1), -1)
|
||||
y = tf.expand_dims(tf.expand_dims(y, -1), -1)
|
||||
x = tf.expand_dims(tf.expand_dims(x, -1), -1)
|
||||
|
||||
zeros = tf.zeros([B, 1, 1])
|
||||
ones = tf.ones([B, 1, 1])
|
||||
z = tf.clip_by_value(z, -math.pi, math.pi)
|
||||
y = tf.clip_by_value(y, -math.pi, math.pi)
|
||||
x = tf.clip_by_value(x, -math.pi, math.pi)
|
||||
|
||||
cosx = tf.cos(x)
|
||||
sinx = tf.sin(x)
|
||||
rotx_1 = tf.concat([ones, zeros, zeros], axis=3)
|
||||
rotx_2 = tf.concat([zeros, cosx, -sinx], axis=3)
|
||||
rotx_3 = tf.concat([zeros, sinx, cosx], axis=3)
|
||||
xmat = tf.concat([rotx_1, rotx_2, rotx_3], axis=2)
|
||||
|
||||
cosz = tf.cos(z)
|
||||
sinz = tf.sin(z)
|
||||
rotz_1 = tf.concat([cosz, -sinz, zeros], axis=3)
|
||||
rotz_2 = tf.concat([sinz, cosz, zeros], axis=3)
|
||||
rotz_3 = tf.concat([zeros, zeros, ones], axis=3)
|
||||
zmat = tf.concat([rotz_1, rotz_2, rotz_3], axis=2)
|
||||
|
||||
cosy = tf.cos(y)
|
||||
siny = tf.sin(y)
|
||||
roty_1 = tf.concat([cosy, zeros, siny], axis=3)
|
||||
roty_2 = tf.concat([zeros, ones, zeros], axis=3)
|
||||
roty_3 = tf.concat([-siny, zeros, cosy], axis=3)
|
||||
ymat = tf.concat([roty_1, roty_2, roty_3], axis=2)
|
||||
|
||||
rotMat = tf.matmul(tf.matmul(xmat, ymat), zmat)
|
||||
return rotMat
|
||||
cosz = tf.cos(z)
|
||||
sinz = tf.sin(z)
|
||||
|
||||
# Otherwise this will need to be reversed
|
||||
# Rotate about x, y then z. z goes first here as rotation is always left side of coordinates
|
||||
# R = Rz(φ)Ry(θ)Rx(ψ)
|
||||
# = | cos(θ)cos(φ) sin(ψ)sin(θ)cos(φ) − cos(ψ)sin(φ) cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ) |
|
||||
# | cos(θ)sin(φ) sin(ψ)sin(θ)sin(φ) + cos(ψ)cos(φ) cos(ψ)sin(θ)sin(φ) − sin(ψ)cos(φ) |
|
||||
# | −sin(θ) sin(ψ)cos(θ) cos(ψ)cos(θ) |
|
||||
row_1 = tf.concat([cosy * cosz, sinx * siny * cosz - cosx * sinz, cosx * siny * cosz + sinx * sinz], 1)
|
||||
row_2 = tf.concat([cosy * sinz, sinx * siny * sinz + cosx * cosz, cosx * siny * sinz - sinx * cosz], 1)
|
||||
row_3 = tf.concat([-siny, sinx * cosy, cosx * cosy], 1)
|
||||
return tf.reshape(tf.concat([row_1, row_2, row_3], axis=1), [batch_size, 3, 3])
|
||||
|
||||
|
||||
def pose_vec2mat(vec):
|
||||
@@ -57,13 +46,14 @@ def pose_vec2mat(vec):
|
||||
Returns:
|
||||
A transformation matrix -- [B, 4, 4]
|
||||
"""
|
||||
# TODO: FIXME
|
||||
batch_size, _ = vec.get_shape().as_list()
|
||||
translation = tf.slice(vec, [0, 0], [-1, 3])
|
||||
translation = tf.expand_dims(translation, -1)
|
||||
rx = tf.slice(vec, [0, 3], [-1, 1])
|
||||
ry = tf.slice(vec, [0, 4], [-1, 1])
|
||||
rz = tf.slice(vec, [0, 5], [-1, 1])
|
||||
rot_mat = euler_to_rotation_matrix(rx, ry, rz)
|
||||
rot_mat = euler_to_matrix(rx, ry, rz)
|
||||
rot_mat = tf.squeeze(rot_mat, axis=[1])
|
||||
filler = tf.constant([0.0, 0.0, 0.0, 1.0], shape=[1, 1, 4])
|
||||
filler = tf.tile(filler, [batch_size, 1, 1])
|
||||
@@ -93,12 +83,23 @@ def image_coordinate(batch, height, width):
|
||||
return tf.repeat(tf.expand_dims(stacked, axis=0), batch, axis=0)
|
||||
|
||||
|
||||
def intrinsics_vector_to_matrix(intrinsics):
|
||||
"""
|
||||
Convert 4 element
|
||||
:param intrinsics: Tensor of shape (B, 4), intrinsics for each image
|
||||
:return: Tensor of shape (B, 4, 4), intrinsics for each batch
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
def projective_inverse_warp(target_img, source_img, depth, pose, intrinsics, coordinates):
|
||||
"""
|
||||
Calculate the reprojected image from the source to the target, based on the given depth, pose and intrinsics
|
||||
|
||||
SFM Learner inverse warp step
|
||||
ps ~ K.T(t->s).Dt(pt).K^-1.pt
|
||||
ps ~ K.T(t->s).Dt(pt)*K^-1.pt
|
||||
|
||||
Note that the depth pixel Dt(pt) is multiplied by every coordinate value (just element-wise, not matrix multiplication)
|
||||
|
||||
Idea is to map the pixel coordinates of the target image to 3d space (Dt(pt).K^-1.pt), then map these onto
|
||||
the source image in pixel coordinates (K.T(t->s).{3d coord}), then using the projected coordinates we sample
|
||||
@@ -108,20 +109,28 @@ def projective_inverse_warp(target_img, source_img, depth, pose, intrinsics, coo
|
||||
:param source_img: Tensor, same shape as target_img
|
||||
:param depth: Tensor, (batch, height, width, 1)
|
||||
:param pose: (batch, 6)
|
||||
:param intrinsics: (batch, 3, 3)
|
||||
:param intrinsics: (batch, 4) (fx, fy, px, py) TODO: Intrinsics per image (per source/target image)?
|
||||
:param coordinates: (batch, height, width, 3) - coordinates for the image. Pass this in so it doesn't need to be
|
||||
calculated on every warp step
|
||||
:return: The source image reprojected to the target
|
||||
"""
|
||||
# Convert pose vector (output of pose net) to pose matrix (4x4)
|
||||
pose_4x4 = pose_vec2mat(pose)
|
||||
|
||||
# Convert intrinsics matrix (3x3) to (4x4) so it can be multiplied by the pose net
|
||||
# intrinsics_4x4 =
|
||||
|
||||
# Calculate inverse of the 4x4 intrinsics matrix
|
||||
tf.linalg.inv()
|
||||
|
||||
# Create grid of homogenous coordinates
|
||||
# Create grid (or array?) of homogenous coordinates
|
||||
grid_coords = image_coordinate(*depth.shape)
|
||||
# Flatten the image coords to [B, 3, height * width] so each point can be used in calculations
|
||||
grid_coords = tf.transpose(tf.reshape(grid_coords, [0, 2, 1]))
|
||||
|
||||
# Get grid coordinates as array
|
||||
|
||||
# Do the function
|
||||
|
||||
# sample from the source image using the coordinates applied by the function
|
||||
|
||||
#
|
||||
pass
|
||||
|
||||
@@ -9,17 +9,20 @@ import warp
|
||||
class MyTestCase(unittest.TestCase):
|
||||
def test_euler_to_rotation_matrix(self):
|
||||
# quarter rotation in every
|
||||
x, y, z = tf.expand_dims(tf.expand_dims(tf.constant(np.pi / 2), 0), 0)
|
||||
x = y = z = tf.expand_dims(tf.expand_dims(tf.constant(np.pi / 2), 0), 0)
|
||||
x2 = y2 = z2 = tf.expand_dims(tf.expand_dims(tf.constant(np.pi / 4), 0), 0)
|
||||
|
||||
x_batch = tf.concat([x, x2], 0)
|
||||
y_batch = tf.concat([y, y2], 0)
|
||||
z_batch = tf.concat([z, z2], 0)
|
||||
|
||||
# TODO: Construct expected final rotation matrix, just 3x3 using numpy, so that we can do an
|
||||
# elementwise comparison later. Probably also want to check the
|
||||
|
||||
rotation_matrices = warp.euler_to_rotation_matrix(x, y, z)
|
||||
rotation_matrices = warp.euler_to_matrix(x_batch, y_batch, z_batch)
|
||||
# old_rot = utils.euler2mat_noNDim(x_batch, y_batch, z_batch)
|
||||
|
||||
self.assertEqual(rotation_matrices.shape, [1, 3, 3])
|
||||
rot_mat = rotation_matrices[0]
|
||||
|
||||
# TODO: Element-wise checks...
|
||||
self.assertEqual(rotation_matrices.shape, [2, 3, 3])
|
||||
|
||||
def test_coordinates(self):
|
||||
height = 1000
|
||||
|
||||
Reference in New Issue
Block a user