diff --git a/packnet_functional.py b/packnet_functional.py index c404c07..f2f8765 100644 --- a/packnet_functional.py +++ b/packnet_functional.py @@ -22,10 +22,10 @@ def residual_layer(inputs, out_channels, stride, dropout=None): x = layers.Conv2D(out_channels, 3, padding='same', strides=stride)(inputs) x = layers.Conv2D(out_channels, 3, padding='same')(x) shortcut = layers.Conv2D( - out_channels, 3, padding='same', strides=stride)(inputs) + out_channels, 1, padding='same', strides=stride)(inputs) if dropout: shortcut = keras.layers.SpatialDropout2D(dropout)(shortcut) - x = keras.layers.Concatenate()([x, shortcut]) + x = keras.layers.Add()([x, shortcut]) x = group_norm.GroupNormalization(16)(x) return keras.layers.ELU()(x) @@ -52,11 +52,11 @@ def packnet_inverse_depth(inputs, out_channels=1, min_depth=0.5): def pack_3d(inputs, kernel_size, r=2, features_3d=8): """ - Implementatino of the 3d packing block proposed here: https://arxiv.org/abs/1905.02693 - :param inputs: - :param kernel_size: - :param r: - :param features_3d: + Implementation of the 3d packing block proposed here: https://arxiv.org/abs/1905.02693 + :param inputs: Tensor inputs + :param kernel_size: Conv3D kernels size + :param r: Packing factor + :param features_3d: Packing depth (increase to increase number of parameters and accuracy) :return: """ # Data format for single image in nyu is HWC (space_to_depth uses NHWC as default) @@ -78,19 +78,23 @@ def unpack_3d(inputs, out_channels, kernel_size, r=2, features_3d=8): return nn.depth_to_space(x, r) -# TODO: Support different size packnet for scaling up/down # TODO: Support different channel format (right now we're supporting NHWC, we should also support NCHW) -def make_packnet(shape=(224, 224, 3), skip_add=True, features_3d=4, dropout=None): +def make_packnet(shape=(224, 224, 3), skip_add=False, features_3d=8, dropout=None, small=False): """ Make the PackNet depth network. :param shape: Input shape of the image :param skip_add: Set to use add rather than concat skip connections, defaults to True - :return: + :param features_3d: Number of layers in 3D conv for packing/unpacking layers + :param dropout: Whether to build the model with dropout layers fpr regularisation. Useful in training only + :param small: Set True to not include the middle-most layer. Reduces params from ~128M -> ~34M + Further reductions can be achieved by using additive skip connections and less 3d features (down to min ~10M) + :return: Packnet Keras Model """ # ================ ENCODER ================= input = keras.layers.Input(shape=shape) - x = packnet_conv2d(input, 32, 5, 1) + initial_conv_channels = 32 if small else 64 + x = packnet_conv2d(input, initial_conv_channels, 5, 1) skip_1 = x x = packnet_conv2d(x, 64, 7, 1) x = pack_3d(x, 5, features_3d=features_3d) @@ -104,18 +108,22 @@ def make_packnet(shape=(224, 224, 3), skip_add=True, features_3d=4, dropout=None x = residual_block(x, 256, 3, 1, dropout) x = pack_3d(x, 3, features_3d=features_3d) skip_5 = x - x = residual_block(x, 512, 3, 1, dropout) - x = pack_3d(x, 3, features_3d=features_3d) + if not small: + x = residual_block(x, 512, 3, 1, dropout) + x = pack_3d(x, 3, features_3d=features_3d) # ================ ENCODER ================= # ================ DECODER ================= + # Addition requires we half the outputs so there is a matching number of channels + divide_factor = (2 if skip_add else 1) # layer 7 - x = unpack_3d(x, 512, 3, features_3d=features_3d) - x = keras.layers.Add()( - [x, skip_5]) if skip_add else keras.layers.Concatenate()([x, skip_5]) - x = packnet_conv2d(x, 512, 3, 1) + if not small: + x = unpack_3d(x, 512 // divide_factor, 3, features_3d=features_3d) + x = keras.layers.Add()( + [x, skip_5]) if skip_add else keras.layers.Concatenate()([x, skip_5]) + x = packnet_conv2d(x, 512, 3, 1) # layer 8 - x = unpack_3d(x, 256, 3, features_3d=features_3d) + x = unpack_3d(x, 256 // divide_factor, 3, features_3d=features_3d) x = keras.layers.Add()( [x, skip_4]) if skip_add else keras.layers.Concatenate()([x, skip_4]) x = packnet_conv2d(x, 256, 3, 1) @@ -123,7 +131,7 @@ def make_packnet(shape=(224, 224, 3), skip_add=True, features_3d=4, dropout=None # layer 9 x = packnet_inverse_depth(x, 1) # layer 10 - u_layer_8 = unpack_3d(layer_8, 128, 3, features_3d=features_3d) + u_layer_8 = unpack_3d(layer_8, 128 // divide_factor, 3, features_3d=features_3d) x = keras.layers.UpSampling2D()(x) x = keras.layers.Add()([u_layer_8, skip_3, x]) if skip_add else keras.layers.Concatenate()([u_layer_8, skip_3, x]) x = packnet_conv2d(x, 128, 3, 1) @@ -139,12 +147,20 @@ def make_packnet(shape=(224, 224, 3), skip_add=True, features_3d=4, dropout=None # layer 13 x = packnet_inverse_depth(x) # layer 14 - u_layer_12 = unpack_3d(layer_12, 32, 3, features_3d=features_3d) + u_layer_12 = unpack_3d(layer_12, initial_conv_channels, 3, features_3d=features_3d) x = keras.layers.UpSampling2D()(x) x = keras.layers.Add()([u_layer_12, skip_1, x]) if skip_add else keras.layers.Concatenate()([u_layer_12, skip_1, x]) - x = packnet_conv2d(x, 32, 3, 1) + x = packnet_conv2d(x, initial_conv_channels, 3, 1) # layer 15 x = packnet_inverse_depth(x) # ================ DECODER ================= return keras.Model(inputs=input, outputs=x, name="PackNet") + + +if __name__ == '__main__': + # This is the implementation used by the packnet sfm paper + make_packnet().summary() + + # This is the very small version of packnet + make_packnet(small=True, features_3d=1, skip_add=True).summary()