Compare commits

18 Commits

Author SHA1 Message Date
Piv
950dd4582e Start adding optimise step to unsupervised train, add demo to main 2022-05-03 19:51:34 +09:30
Piv
909c38cf56 Fix total loss calculation, add some more todos 2022-05-03 19:05:29 +09:30
piv
188c55d1c8 Update for python 2.10, add general training algorithm step 2022-05-03 16:56:15 +09:30
Piv
aa423cc38a Start adding unsupervised train loop 2021-11-20 13:37:26 +10:30
Piv
2bb37b2722 Fix up generator to include intrinsics 2021-08-29 19:26:15 +09:30
Piv
90b73bf420 Start adding generators for unsupervised training 2021-08-29 18:06:37 +09:30
Piv
42fcf5554a Update warp test to verify output shape 2021-08-24 21:39:10 +09:30
Piv
c164c9720a Finish Projective Inverse Warp algorithm 2021-08-24 20:13:30 +09:30
Piv
b7917ec465 More warp implementation 2021-08-21 17:32:16 +09:30
Piv
df1ac89a81 Add euler to rotation matrix, grid flattening 2021-08-10 20:39:52 +09:30
Piv
8016f0f945 Add coordinates generation implementation 2021-08-08 22:11:50 +09:30
Piv
ece37843ce Merge branch 'main' into unsupervised 2021-08-08 18:58:39 +09:30
Piv
cd278e683f Start adding pose warp conversions 2021-08-07 17:18:06 +09:30
Piv
5996d6eaf0 Merge branch 'main' into unsupervised 2021-08-05 17:49:48 +09:30
Piv
8be4ce4e6d Add smooth loss 2021-08-05 17:48:44 +09:30
Piv
b95442bb23 Finish off pose net 2021-08-04 20:51:46 +09:30
Piv
a111f89722 Start adding pose decoder 2021-08-03 20:25:19 +09:30
Piv
2372b906df Add resnet18 2021-08-01 10:44:33 +09:30
7 changed files with 479 additions and 25 deletions

10
main.py
View File

@@ -1,4 +1,6 @@
import fast_depth_functional as fd
from unsupervised.models import pose_net, wrap_mobilenet_nnconv5_for_utrain
from unsupervised.train import UnsupervisedPoseDepthLearner
if __name__ == '__main__':
fd.fix_windows_gpu()
@@ -9,3 +11,11 @@ if __name__ == '__main__':
# Save in Tensorflow SavedModel format
# tf.saved_model.save(model, 'fast_depth_nyu_v2_224_224_3_e1_saved_model')
# Unsupervised
depth_model = fd.mobilenet_nnconv5()
pose_model = pose_net()
model = UnsupervisedPoseDepthLearner(wrap_mobilenet_nnconv5_for_utrain(depth_model), pose_model)
model.compile(optimizer='adam')
# TODO: Incorporate data generator
# model.fit()

50
unsupervised/load.py Normal file
View File

@@ -0,0 +1,50 @@
import os
import cv2
def video_generator(video_path_or_folder, intrinsics, allowed_extensions=('mp4', 'mkv', 'mov')):
"""
Create a generator for unsupervised training on depth sequences from a video file or folder of video files
:param video_path_or_folder: Video file or folder with list of video files to iterate through
:param intrinsics: Intrinsics for the videos TODO: Intrinsics per video
:param allowed_extensions: Allowed video extensions, to not accidentally pick files that aren't videos
:return: generator that yields dict of {frames: [frame1, frame2, frame3], intrinsics: [fx, fy, tx, ty]}
"""
if os.path.isfile(video_path_or_folder):
# TODO: How to re-yield? Is this enough, since I'm just returning the actual generator?
# Or do I need to iterate like below?
return _single_video_generator(video_path_or_folder)
else:
for root, dirs, files in os.walk(video_path_or_folder):
for file in files:
if os.path.splitext(file)[1] in allowed_extensions:
for frames in _single_video_generator(file):
yield frames
def _single_video_generator(video_file, intrinsics):
# Single video file
video = cv2.VideoCapture(video_file)
try:
# Buffer to store 3 frames, yield when this fills up
current_frames = []
while video.grab():
current_frames.append(video.retrieve())
if len(current_frames) == 3:
temp_frames = current_frames
current_frames = []
# TODO: Consider converting frames to tensor
yield {'frames': temp_frames, 'intrinsics': intrinsics}
finally:
video.release()
def image_generator(root_folder):
"""
Create an image generator for unsupervised training
:param root_folder:
:return:
"""
pass

View File

@@ -9,8 +9,8 @@ def wrap_mobilenet_nnconv5_for_utrain(model):
This just exposes the lower disparity layers as outputs, so they can be used to train at different scales/image
resolutions.
:param model:
:return:
:param model: Fast Depth model to wrap
:return: Keras model that takes same input as model and outputs the model output plus 3 disparity layers
"""
input = model.input
disp_1 = model.get_layer('conv_pw_%d_relu' % 15).output

View File

@@ -3,7 +3,9 @@ Utils to load and split image/video data.
"""
from __future__ import division
import math
import tensorflow as tf
@@ -58,6 +60,49 @@ def euler2mat(z, y, x):
return rotMat
def euler2mat_noNDim(x, y, z):
"""
:param x: Tensor of shape (B, 1) - x axis rotation
:param y: Tensor of shape (B, 1) - y axis rotation
:param z: Tensor of shape (B, 1) - z axis rotation
:return: Rotation matrix for the given euler anglers, in the order rotation(x).rotation(y).rotation(z)
"""
batch_size = tf.shape(z)[0]
# Euler angles should be between -pi and pi, clip so the pose network is coerced to this range
z = tf.clip_by_value(z, -math.pi, math.pi)
y = tf.clip_by_value(y, -math.pi, math.pi)
x = tf.clip_by_value(x, -math.pi, math.pi)
zeros = tf.zeros([batch_size, 1])
ones = tf.ones([batch_size, 1])
cosx = tf.cos(x)
sinx = tf.sin(x)
rotx_1 = tf.concat([ones, zeros, zeros], axis=1)
rotx_2 = tf.concat([zeros, cosx, -sinx], axis=1)
rotx_3 = tf.concat([zeros, sinx, cosx], axis=1)
xmat = tf.reshape(tf.concat([rotx_1, rotx_2, rotx_3], axis=1), [batch_size, 3, 3])
cosz = tf.cos(z)
sinz = tf.sin(z)
rotz_1 = tf.concat([cosz, -sinz, zeros], axis=1)
rotz_2 = tf.concat([sinz, cosz, zeros], axis=1)
rotz_3 = tf.concat([zeros, zeros, ones], axis=1)
zmat = tf.reshape(tf.concat([rotz_1, rotz_2, rotz_3], axis=1), [batch_size, 3, 3])
cosy = tf.cos(y)
siny = tf.sin(y)
roty_1 = tf.concat([cosy, zeros, siny], axis=1)
roty_2 = tf.concat([zeros, ones, zeros], axis=1)
roty_3 = tf.concat([-siny, zeros, cosy], axis=1)
ymat = tf.reshape(tf.concat([roty_1, roty_2, roty_3], axis=1), [batch_size, 3, 3])
rotMat = tf.matmul(tf.matmul(zmat, ymat), xmat)
return rotMat
def pose_vec2mat(vec):
"""Converts 6DoF parameters to transformation matrix
Args:
@@ -281,6 +326,7 @@ def bilinear_sampler(imgs, coords):
])
return output
# Spatial transformer network bilinear sampler, taken from https://github.com/kevinzakka/spatial-transformer-network/blob/master/stn/transformer.py

View File

@@ -4,17 +4,98 @@ Trainer to learn depth information on unlabeled data (raw images/videos)
Allows pluggable depth networks for differing performance (including fast-depth)
"""
import tensorflow.keras as keras
import tensorflow as tf
import tensorflow.python.keras as keras
from unsupervised import warp, loss
class SFMLearner(keras.Model):
class UnsupervisedPoseDepthLearner(keras.Model):
"""
Keras model to learn simultaneous depth + pose from image/video sequences.
def __init__(depth_model, pose_model):
pass
To train this, the datasource should yield 3 frames and camera intrinsics.
Optionally velocity + timestamp per frame to train to real scale
"""
def __init__(self, depth_model, pose_model, num_scales=3, *args, **kwargs):
super().__init__(*args, **kwargs)
self.depth_model = depth_model
self.pose_model = pose_model
# TODO: I think num_scales should be something defined on the depth model itself
self.num_scales = num_scales
self.smoothness = 1e-3
def train_step(self, data):
"""
:param data: Format: {frames: Mat[3], intrinsics: Tensor}
"""
with tf.GradientTape as tape:
# Pass through depth for target image
# TODO: Convert frame to tensor (or do this in the dataloader)
# TODO: Ensure the depth output includes enough outputs for each scale
depth = self.depth_model(data.frames[1])
# Pass through depth -> pose for both source images
# TODO: Concat these poses using tf.concat
pose1 = self.pose_model(data.frames[1], data.frames[0])
pose2 = self.pose_model(data.frames[1], data.frames[2])
loss = self.calculate_loss(depth, pose1, pose2, data)
# Apply optimise step on total loss
# TODO: Do these need to be separate for depth/pose model?
grads = tape.gradient(loss, zip(self.depth_model.trainable_weights, self.pose_model.trainable_weights))
self.optimizer.apply_gradients(
zip(grads, self.depth_model.trainable_weights, self.pose_model.trainable_weights))
def calculate_loss(self, depth, pose1, pose2, data):
shape = depth[0].shape
# TODO: Pull coords out of train step into initialiser, then it only needs to be created once.
# Ideally the size/batch size will still be calculated automatically
coords = warp.image_coordinate(shape[0], shape[1], shape[2])
total_loss = 0
scale_losses = []
# For each scale, do the projective inverse warp step and calculate losses
for scale in range(self.num_scales):
# TODO: Could simplify this by stacking the source images (see sfmlearner)
# It isn't too much of an issue right now since we're only using 2 images (left/right)
# For each depth output (scale), do the projective inverse warp on each input image and calculate the losses
# Only take the min loss between the two warped images (from monodepth2)
# TODO: Need to bilinear resize the depth at each scale up to the size of image
warp1 = warp.projective_inverse_warp(data.frames[0], depth[scale], pose1, data.intrinsics, coords)
warp2 = warp.projective_inverse_warp(data.frames[2], depth[scale], pose2, data.intrinsics, coords)
# Per pixel loss is just the difference in pixel intensities?
# Something like l1 plus ssim
warp_loss1 = loss.make_combined_ssim_l1_loss(data.frames[1], warp1)
warp_loss2 = loss.make_combined_ssim_l1_loss(data.frames[1], warp2)
# Take loss between target (data.frames[1]) and source images (pre-warp)
source_loss1 = loss.make_combined_ssim_l1_loss(data.frames[1], data.frames[0])
source_loss2 = loss.make_combined_ssim_l1_loss(data.frames[1], data.frames[2])
# Take the min (per pixel) of the losses of warped/unwarped images (so min across pixels of 4 images)
# TODO: Verify the axes are correct
reprojection_loss = tf.reduce_mean(
tf.reduce_min(tf.concat([warp_loss1, warp_loss2, source_loss1, source_loss2], axis=3), axis=3))
# Calculate smooth losses
# TODO: Since smooth loss is calculated directly on the depth at the scale, we need
# to resize the target image to the same dimensions as the depth map at the current scale
# Can do this by just inspecting the shape of the depth and resizing to match that (but
# with 3 colour channels)
smooth_loss = loss.smooth_loss(depth[scale], data.frames[1])
# SFM Learner downscales smoothing loss depending on the scale
smoothed_reprojection_loss = self.smoothness * smooth_loss / (2 ** scale)
# Add to total loss (with smooth loss + smooth loss weighting applied to pixel losses)
total_loss += reprojection_loss + smoothed_reprojection_loss
pass
def make_sfm_learner_pose_net(input_shape=(224, 224, 3)):
pass
# Collect losses, average them out (divide by number of scales)
total_loss /= self.num_scales
return total_loss

View File

@@ -1,19 +1,223 @@
def projective_inverse_warp(target_img, source_img, depth, pose, intrinsics):
import math
import tensorflow as tf
def euler_to_matrix(x, y, z):
"""
:param x: Tensor of shape (B, 1) - x axis rotation
:param y: Tensor of shape (B, 1) - y axis rotation
:param z: Tensor of shape (B, 1) - z axis rotation
:return: Rotation matrix for the given euler anglers, in the order rotation(x) -> rotation(y) -> rotation(z)
"""
batch_size = tf.shape(z)[0]
# Euler angles should be between -pi and pi, clip so the pose network is coerced to this range
z = tf.clip_by_value(z, -math.pi, math.pi)
y = tf.clip_by_value(y, -math.pi, math.pi)
x = tf.clip_by_value(x, -math.pi, math.pi)
cosx = tf.cos(x)
sinx = tf.sin(x)
cosy = tf.cos(y)
siny = tf.sin(y)
cosz = tf.cos(z)
sinz = tf.sin(z)
# Otherwise this will need to be reversed
# Rotate about x, y then z. z goes first here as rotation is always left side of coordinates
# R = Rz(φ)Ry(θ)Rx(ψ)
# = | cos(θ)cos(φ) sin(ψ)sin(θ)cos(φ) cos(ψ)sin(φ) cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ) |
# | cos(θ)sin(φ) sin(ψ)sin(θ)sin(φ) + cos(ψ)cos(φ) cos(ψ)sin(θ)sin(φ) sin(ψ)cos(φ) |
# | sin(θ) sin(ψ)cos(θ) cos(ψ)cos(θ) |
row_1 = tf.concat([cosy * cosz, sinx * siny * cosz - cosx * sinz, cosx * siny * cosz + sinx * sinz], 1)
row_2 = tf.concat([cosy * sinz, sinx * siny * sinz + cosx * cosz, cosx * siny * sinz - sinx * cosz], 1)
row_3 = tf.concat([-siny, sinx * cosy, cosx * cosy], 1)
return tf.reshape(tf.concat([row_1, row_2, row_3], axis=1), [batch_size, 3, 3])
def pose_vec2mat(vec):
"""Converts 6DoF parameters to transformation matrix
Args:
vec: 6DoF parameters in the order of tx, ty, tz, rx, ry, rz -- [B, 6]
Returns:
A transformation matrix -- [B, 3, 4]
"""
batch_size, _ = vec.get_shape().as_list()
translation = tf.slice(vec, [0, 0], [-1, 3])
translation = tf.expand_dims(translation, -1)
rx = tf.slice(vec, [0, 3], [-1, 1])
ry = tf.slice(vec, [0, 4], [-1, 1])
rz = tf.slice(vec, [0, 5], [-1, 1])
rot_mat = euler_to_matrix(rx, ry, rz)
transform_mat = tf.concat([rot_mat, translation], axis=2)
return transform_mat
def image_coordinate(batch, height, width):
"""
Construct a tensor for the given height/width with elements the homogenous coordinates for the pixel
:param batch: Number of images in a batch
:param height: Height of image
:param width: Width of image
:return: Tensor of shape (B, height, width, 3), homogenous coordinates for an image.
Coordinates are in order [x, y, 1]
"""
x_coords = tf.range(width)
y_coords = tf.range(height)
x_mesh, y_mesh = tf.meshgrid(x_coords, y_coords)
ones_mesh = tf.cast(tf.ones([height, width]), tf.int32)
stacked = tf.stack([x_mesh, y_mesh, ones_mesh], axis=2)
return tf.cast(tf.repeat(tf.expand_dims(stacked, axis=0), batch, axis=0), dtype=tf.float32)
def projective_inverse_warp(source_img, depth, pose, intrinsics, coordinates):
"""
Calculate the reprojected image from the source to the target, based on the given depth, pose and intrinsics
SFM Learner inverse warp step
ps ~ K.T(t->s).Dt(pt).K^-1.pt
ps ~ K.T(t->s).Dt(pt)*K^-1.pt
Note that the depth pixel Dt(pt) is multiplied by every coordinate value (just element-wise, not matrix multiplication)
Idea is to map the pixel coordinates of the target image to 3d space (Dt(pt).K^-1.pt), then map these onto
the source image in pixel coordinates (K.T(t->s).{3d coord}), then using the projected coordinates we sample
the pixels in the source image (ps) to reconstruct the target image.
:param target_img: Tensor (batch, height, width, 3)
:param source_img: Tensor, same shape as target_img
:param depth: Tensor, (batch, height, width, 1)
:param pose: (batch, 3, 3)
:param intrinsics: (batch, 3, 3)
:param source_img: Tensor (batch, height, width, 3)
:param depth: Tensor, (batch, height, width)
:param pose: (batch, 6)
:param intrinsics: (batch, 3, 3) TODO: Intrinsics per image (per source/target image)?
:param coordinates: (batch, 3, height * width) - coordinates for the image. Pass this in so it doesn't need to be
calculated on every warp step
:return: The source image reprojected to the target
"""
pass
# Convert pose vector (output of pose net) to pose matrix (4x4)
pose_3x4 = pose_vec2mat(pose)
# Convert intrinsics matrix (3x3) to (4x4) so it can be multiplied by the pose net
# intrinsics_4x4 =
# Calculate inverse of the 4x4 intrinsics matrix
intrinsics_inverse = tf.linalg.inv(intrinsics)
depth_flat = tf.reshape(depth, [depth.shape[0], depth.shape[1] * depth.shape[2]])
# Do the function
sample_coordinates = tf.matmul(tf.matmul(intrinsics, pose_3x4),
tf.concat([depth_flat * tf.matmul(intrinsics_inverse, coordinates),
tf.ones([depth_flat.shape[0], 1, depth_flat.shape[1]])], axis=1))
# Normalise the x/y axes (divide by z axis)
sample_coordinates = sample_coordinates[:, 0:2] / sample_coordinates[:, 2]
# Reshape back to image coordinates
sample_coordinates = tf.reshape(tf.transpose(sample_coordinates, [0, 2, 1]),
[depth.shape[0], depth.shape[1], depth.shape[2], 2])
# sample from the source image using the coordinates applied by the function
return bilinear_sampler(source_img, sample_coordinates)
def bilinear_sampler(imgs, coords):
"""Construct a new image by bilinear sampling from the input image.
Points falling outside the source image boundary have value 0.
Args:
imgs: source image to be sampled from [batch, height_s, width_s, channels]
coords: coordinates of source pixels to sample from [batch, height_t,
width_t, 2]. height_t/width_t correspond to the dimensions of the output
image (don't need to be the same as height_s/width_s). The two channels
correspond to x and y coordinates respectively.
Returns:
A new sampled image [batch, height_t, width_t, channels]
"""
def _repeat(x, n_repeats):
rep = tf.transpose(
tf.expand_dims(tf.ones(shape=tf.stack([
n_repeats,
])), 1), [1, 0])
rep = tf.cast(rep, 'float32')
x = tf.matmul(tf.reshape(x, (-1, 1)), rep)
return tf.reshape(x, [-1])
coords_x, coords_y = tf.split(coords, [1, 1], axis=3)
inp_size = imgs.get_shape()
coord_size = coords.get_shape()
out_size = coords.get_shape().as_list()
out_size[3] = imgs.get_shape().as_list()[3]
coords_x = tf.cast(coords_x, 'float32')
coords_y = tf.cast(coords_y, 'float32')
x0 = tf.floor(coords_x)
x1 = x0 + 1
y0 = tf.floor(coords_y)
y1 = y0 + 1
y_max = tf.cast(tf.shape(imgs)[1] - 1, 'float32')
x_max = tf.cast(tf.shape(imgs)[2] - 1, 'float32')
zero = tf.zeros([1], dtype='float32')
x0_safe = tf.clip_by_value(x0, zero, x_max)
y0_safe = tf.clip_by_value(y0, zero, y_max)
x1_safe = tf.clip_by_value(x1, zero, x_max)
y1_safe = tf.clip_by_value(y1, zero, y_max)
# bilinear interp weights, with points outside the grid having weight 0
# wt_x0 = (x1 - coords_x) * tf.cast(tf.equal(x0, x0_safe), 'float32')
# wt_x1 = (coords_x - x0) * tf.cast(tf.equal(x1, x1_safe), 'float32')
# wt_y0 = (y1 - coords_y) * tf.cast(tf.equal(y0, y0_safe), 'float32')
# wt_y1 = (coords_y - y0) * tf.cast(tf.equal(y1, y1_safe), 'float32')
wt_x0 = x1_safe - coords_x
wt_x1 = coords_x - x0_safe
wt_y0 = y1_safe - coords_y
wt_y1 = coords_y - y0_safe
# indices in the flat image to sample from
dim2 = tf.cast(inp_size[2], 'float32')
dim1 = tf.cast(inp_size[2] * inp_size[1], 'float32')
base = tf.reshape(
_repeat(
tf.cast(tf.range(coord_size[0]), 'float32') * dim1,
coord_size[1] * coord_size[2]),
[out_size[0], out_size[1], out_size[2], 1])
base_y0 = base + y0_safe * dim2
base_y1 = base + y1_safe * dim2
idx00 = tf.reshape(x0_safe + base_y0, [-1])
idx01 = x0_safe + base_y1
idx10 = x1_safe + base_y0
idx11 = x1_safe + base_y1
# sample from imgs
imgs_flat = tf.reshape(imgs, tf.stack([-1, inp_size[3]]))
imgs_flat = tf.cast(imgs_flat, 'float32')
im00 = tf.reshape(
tf.gather(imgs_flat, tf.cast(idx00, 'int32')), out_size)
im01 = tf.reshape(
tf.gather(imgs_flat, tf.cast(idx01, 'int32')), out_size)
im10 = tf.reshape(
tf.gather(imgs_flat, tf.cast(idx10, 'int32')), out_size)
im11 = tf.reshape(
tf.gather(imgs_flat, tf.cast(idx11, 'int32')), out_size)
w00 = wt_x0 * wt_y0
w01 = wt_x0 * wt_y1
w10 = wt_x1 * wt_y0
w11 = wt_x1 * wt_y1
output = tf.add_n([
w00 * im00, w01 * im01,
w10 * im10, w11 * im11
])
return output

View File

@@ -0,0 +1,63 @@
import unittest
import numpy as np
import tensorflow as tf
import warp
class MyTestCase(unittest.TestCase):
def test_euler_to_rotation_matrix(self):
# quarter rotation in every
x = y = z = tf.expand_dims(tf.expand_dims(tf.constant(np.pi / 2), 0), 0)
x2 = y2 = z2 = tf.expand_dims(tf.expand_dims(tf.constant(np.pi / 4), 0), 0)
x_batch = tf.concat([x, x2], 0)
y_batch = tf.concat([y, y2], 0)
z_batch = tf.concat([z, z2], 0)
# TODO: Construct expected final rotation matrix, just 3x3 using numpy, so that we can do an
# elementwise comparison later. Probably also want to check the
rotation_matrices = warp.euler_to_matrix(x_batch, y_batch, z_batch)
# old_rot = utils.euler2mat_noNDim(x_batch, y_batch, z_batch)
self.assertEqual(rotation_matrices.shape, [2, 3, 3])
def test_coordinates(self):
height = 1000
width = 2000
coords = warp.image_coordinate(8, height, width)
self.assertEqual(coords.shape, [8, height, width, 3])
self.assertEqual(coords[0, 0, 0, 0], 0)
self.assertEqual(coords[0, 0, 0, 1], 0)
self.assertEqual(coords[0, 0, 0, 2], 1)
self.assertEqual(coords[0, height - 1, 0, 0], 0)
self.assertEqual(coords[0, height - 1, 0, 1], height - 1)
self.assertEqual(coords[0, height - 1, 0, 2], 1)
self.assertEqual(coords[0, height - 1, width - 1, 0], width - 1)
self.assertEqual(coords[0, height - 1, width - 1, 1], height - 1)
self.assertEqual(coords[0, height - 1, width - 1, 2], 1)
def test_warp(self):
height = 1000
width = 2000
coords = warp.image_coordinate(1, height, width)
coords = tf.reshape(coords, [1, height * width, 3])
coords = tf.transpose(coords, [0, 2, 1])
# source image to sample from
img = tf.random.uniform([1, height, width, 3]) * 255
intrinsics = tf.constant([[[1, 0, 0], [0, 1, 0], [0, 0, 1]]], dtype=tf.float32)
disp = tf.random.uniform([1, height, width]) * 255
pose = tf.random.uniform([1, 6])
self.assertEqual(warp.projective_inverse_warp(img, disp, pose, intrinsics, coords).shape, img.shape)
if __name__ == '__main__':
unittest.main()