{ "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8-final" }, "orig_nbformat": 2, "kernelspec": { "name": "python3", "display_name": "Python 3.8.8 64-bit ('tensorflow2': conda)", "metadata": { "interpreter": { "hash": "ee99f7bd678359d45d92ad289bdab8f6bcfaae579cfd1bff07d2bb16d7ba024f" } } } }, "nbformat": 4, "nbformat_minor": 2, "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import fast_depth_functional as fd" ] }, { "source": [ "### Windows GPU Fix" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "1 Physical GPUs, 1 Logical GPUs\n" ] } ], "source": [ "fd.fix_windows_gpu()" ] }, { "source": [ "## Create and compile the model" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "model = fd.mobilenet_nnconv5(weights='imagenet')\n", "fd.compile(model)" ] }, { "source": [ "## Train the model using the nyu_v2 dataset (default, huge download)" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fd.train(existing_model=model, save_file='../fast-depth-experimental')" ] }, { "source": [ "## Evaluate the trained model" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fd.evaluate(model)" ] } ] }