import tensorflow as tf def dense_depth_loss_function(y, y_pred): """ Implementation of the loss from the dense depth paper https://arxiv.org/pdf/1812.11941.pdf """ if len(y.shape) == 3: y = tf.expand_dims(y, 3) if len(y_pred.shape) == 3: y_pred = tf.expand_dims(y_pred, 3) # Point-wise L1 loss l1_depth = tf.reduce_mean(tf.math.abs(y_pred - y), axis=-1) # L1 loss over image gradients dy, dx = tf.image.image_gradients(y) dy_pred, dx_pred = tf.image.image_gradients(y_pred) gradient = tf.reduce_mean(tf.math.abs(dy_pred - dy) + tf.math.abs(dx_pred - dx), axis=-1) # Structural Similarity (SSIM) ssim = tf.clip_by_value((1 - tf.image.ssim(y, y_pred, 100)) / 2, 0, 1) return 0.1 * tf.reduce_mean(l1_depth) + tf.reduce_mean(gradient) + ssim