import os import cv2 def video_generator(video_path_or_folder, intrinsics, allowed_extensions=('mp4', 'mkv', 'mov')): """ Create a generator for unsupervised training on depth sequences from a video file or folder of video files :param video_path_or_folder: Video file or folder with list of video files to iterate through :param intrinsics: Intrinsics should be static for a single video :param allowed_extensions: Allowed video extensions, to not accidentally pick files that aren't videos :return: """ if os.path.isfile(video_path_or_folder): # TODO: How to re-yield? Is this enough, since I'm just returning the actual generator? # Or do I need to iterate like below? return _single_video_generator(video_path_or_folder) else: for root, dirs, files in os.walk(video_path_or_folder): for file in files: if os.path.splitext(file)[1] in allowed_extensions: for frames in _single_video_generator(file): yield frames def _single_video_generator(video_file): # Single video file video = cv2.VideoCapture(video_file) try: # Buffer to store 3 frames, yield when this fills up current_frames = [] while video.grab(): # TODO: Should I be skipping frames or doing some magic to the frames? Or just leave that to some other # function assuming this will be used in a tf.data object? current_frames.append(video.retrieve()) if len(current_frames) == 3: temp_frames = current_frames current_frames = [] # TODO: Convert to tensor or something notable (e.g. dict of 3 frames) yield temp_frames finally: video.release() def image_generator(root_folder): """ Create an image generator for unsupervised training :param root_folder: :return: """ pass