import fast_depth_functional as fd from unsupervised.models import pose_net, wrap_mobilenet_nnconv5_for_utrain from unsupervised.train import UnsupervisedPoseDepthLearner if __name__ == '__main__': fd.fix_windows_gpu() model = fd.mobilenet_nnconv5(weights='imagenet') fd.compile(model) fd.train(existing_model=model, save_file='../fast-depth-experimental') fd.evaluate(model) # Save in Tensorflow SavedModel format # tf.saved_model.save(model, 'fast_depth_nyu_v2_224_224_3_e1_saved_model') # Unsupervised depth_model = fd.mobilenet_nnconv5() pose_model = pose_net() model = UnsupervisedPoseDepthLearner(wrap_mobilenet_nnconv5_for_utrain(depth_model), pose_model) model.compile(optimizer='adam') # TODO: Incorporate data generator # model.fit()