import tensorflow as tf from tensorflow import keras import tensorflow_datasets as tfds class DecodeConv(keras.layers.Layer): def __init__(self, out_filters, **kwargs): super().__init__(**kwargs) # Should be depthwise followed by batchnorm and relu. self.depthwise = keras.layers.DepthwiseConv2D(5) self.batch_norm = keras.layers.BatchNormalization() self.relu = keras.layers.ReLU(6.) self.pointwise = keras.layers.Conv2D(out_filters, 1) self.pointwise_bn = keras.layers.BatchNormalization() self.pointwise_rl = keras.layers.ReLU(6.) def call(self, inputs, **kwargs): inputs = self.depthwise(inputs, **kwargs) inputs = self.batch_norm(inputs, **kwargs) inputs = self.relu(inputs, **kwargs) inputs = self.pointwise(inputs, **kwargs) inputs = self.pointwise_bn(inputs, **kwargs) return self.pointwise_rl(inputs, **kwargs) class FastDepth(keras.Model): def get_config(self): # TODO: What to put here? pass def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.mobile_net = keras.applications.MobileNet(include_top=False) # TODO: Try keras.layers.SeparableConv2D as well, should do the same thing if relu is used as activation # It probably doesn't, since self.decode_conv1 = DecodeConv(512) self.decode_conv2 = DecodeConv(256) self.decode_conv3 = DecodeConv(128) self.decode_conv4 = DecodeConv(64) self.decode_conv5 = DecodeConv(32) self.final_pointwise = keras.layers.Conv2D(1, 1) self.final_pointwise_bn = keras.layers.BatchNormalization() self.final_pointwise_relu = keras.layers.ReLU() def call(self, inputs, is_training=False, **kwargs): # Go through mobilenet, then each decode layer, including skip connections using: # keras.layers.Add() inputs = self.mobile_net(inputs, is_training=is_training, **kwargs) # FastDepth Additive Decoder inputs = self.decode_conv1(inputs, is_training=is_training, **kwargs) inputs = self.decode_conv2(inputs, is_training=is_training, **kwargs) inputs = inputs + self.mobile_net.get_layer('conv_pw_5_relu').output inputs = self.decode_conv3(inputs, is_training=is_training, **kwargs) inputs = inputs + self.mobile_net.get_layer('conv_pw_3_relu').output inputs = self.decode_conv4(inputs, is_training=is_training, **kwargs) inputs = inputs + self.mobile_net.get_layer('conv_pw_1_relu').output inputs = self.decode_conv5(inputs, is_training=is_training, **kwargs) inputs = self.final_pointwise(inputs, is_training=is_training, **kwargs) inputs = self.final_pointwise_bn(inputs, is_training=is_training, **kwargs) return self.final_pointwise_relu(inputs, is_training=is_training, **kwargs) def load_nyu(): builder = tfds.builder('nyu_depth_v2') builder.download_and_prepare(download_dir='../nyu') return builder.as_dataset(split='train', shuffle_files=True) def print_hi(name): # Use a breakpoint in the code line below to debug your script. print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint. # Press the green button in the gutter to run the script. if __name__ == '__main__': load_nyu() # See PyCharm help at https://www.jetbrains.com/help/pycharm/