import math import tensorflow as tf def euler_to_matrix(x, y, z): """ :param x: Tensor of shape (B, 1) - x axis rotation :param y: Tensor of shape (B, 1) - y axis rotation :param z: Tensor of shape (B, 1) - z axis rotation :return: Rotation matrix for the given euler anglers, in the order rotation(x) -> rotation(y) -> rotation(z) """ batch_size = tf.shape(z)[0] # Euler angles should be between -pi and pi, clip so the pose network is coerced to this range z = tf.clip_by_value(z, -math.pi, math.pi) y = tf.clip_by_value(y, -math.pi, math.pi) x = tf.clip_by_value(x, -math.pi, math.pi) cosx = tf.cos(x) sinx = tf.sin(x) cosy = tf.cos(y) siny = tf.sin(y) cosz = tf.cos(z) sinz = tf.sin(z) # Otherwise this will need to be reversed # Rotate about x, y then z. z goes first here as rotation is always left side of coordinates # R = Rz(φ)Ry(θ)Rx(ψ) # = | cos(θ)cos(φ) sin(ψ)sin(θ)cos(φ) − cos(ψ)sin(φ) cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ) | # | cos(θ)sin(φ) sin(ψ)sin(θ)sin(φ) + cos(ψ)cos(φ) cos(ψ)sin(θ)sin(φ) − sin(ψ)cos(φ) | # | −sin(θ) sin(ψ)cos(θ) cos(ψ)cos(θ) | row_1 = tf.concat([cosy * cosz, sinx * siny * cosz - cosx * sinz, cosx * siny * cosz + sinx * sinz], 1) row_2 = tf.concat([cosy * sinz, sinx * siny * sinz + cosx * cosz, cosx * siny * sinz - sinx * cosz], 1) row_3 = tf.concat([-siny, sinx * cosy, cosx * cosy], 1) return tf.reshape(tf.concat([row_1, row_2, row_3], axis=1), [batch_size, 3, 3]) def pose_vec2mat(vec): """Converts 6DoF parameters to transformation matrix Args: vec: 6DoF parameters in the order of tx, ty, tz, rx, ry, rz -- [B, 6] Returns: A transformation matrix -- [B, 4, 4] """ # TODO: FIXME batch_size, _ = vec.get_shape().as_list() translation = tf.slice(vec, [0, 0], [-1, 3]) translation = tf.expand_dims(translation, -1) rx = tf.slice(vec, [0, 3], [-1, 1]) ry = tf.slice(vec, [0, 4], [-1, 1]) rz = tf.slice(vec, [0, 5], [-1, 1]) rot_mat = euler_to_matrix(rx, ry, rz) rot_mat = tf.squeeze(rot_mat, axis=[1]) filler = tf.constant([0.0, 0.0, 0.0, 1.0], shape=[1, 1, 4]) filler = tf.tile(filler, [batch_size, 1, 1]) transform_mat = tf.concat([rot_mat, translation], axis=2) transform_mat = tf.concat([transform_mat, filler], axis=1) return transform_mat def image_coordinate(batch, height, width): """ Construct a tensor for the given height/width with elements the homogenous coordinates for the pixel :param batch: Number of images in a batch :param height: Height of image :param width: Width of image :return: Tensor of shape (B, height, width, 3), homogenous coordinates for an image. Coordinates are in order [x, y, 1] """ x_coords = tf.range(width) y_coords = tf.range(height) x_mesh, y_mesh = tf.meshgrid(x_coords, y_coords) ones_mesh = tf.cast(tf.ones([height, width]), tf.int32) stacked = tf.stack([x_mesh, y_mesh, ones_mesh], axis=2) return tf.repeat(tf.expand_dims(stacked, axis=0), batch, axis=0) def intrinsics_vector_to_matrix(intrinsics): """ Convert 4 element :param intrinsics: Tensor of shape (B, 4), intrinsics for each image :return: Tensor of shape (B, 4, 4), intrinsics for each batch """ pass def projective_inverse_warp(target_img, source_img, depth, pose, intrinsics, coordinates): """ Calculate the reprojected image from the source to the target, based on the given depth, pose and intrinsics SFM Learner inverse warp step ps ~ K.T(t->s).Dt(pt)*K^-1.pt Note that the depth pixel Dt(pt) is multiplied by every coordinate value (just element-wise, not matrix multiplication) Idea is to map the pixel coordinates of the target image to 3d space (Dt(pt).K^-1.pt), then map these onto the source image in pixel coordinates (K.T(t->s).{3d coord}), then using the projected coordinates we sample the pixels in the source image (ps) to reconstruct the target image. :param target_img: Tensor (batch, height, width, 3) :param source_img: Tensor, same shape as target_img :param depth: Tensor, (batch, height, width, 1) :param pose: (batch, 6) :param intrinsics: (batch, 4) (fx, fy, px, py) TODO: Intrinsics per image (per source/target image)? :param coordinates: (batch, height, width, 3) - coordinates for the image. Pass this in so it doesn't need to be calculated on every warp step :return: The source image reprojected to the target """ # Convert pose vector (output of pose net) to pose matrix (4x4) pose_4x4 = pose_vec2mat(pose) # Convert intrinsics matrix (3x3) to (4x4) so it can be multiplied by the pose net # intrinsics_4x4 = # Calculate inverse of the 4x4 intrinsics matrix tf.linalg.inv() # Create grid (or array?) of homogenous coordinates grid_coords = image_coordinate(*depth.shape) # Flatten the image coords to [B, 3, height * width] so each point can be used in calculations grid_coords = tf.transpose(tf.reshape(grid_coords, [0, 2, 1])) # Get grid coordinates as array # Do the function # sample from the source image using the coordinates applied by the function pass