import tensorflow as tf def dense_depth_loss_function(y, y_pred): """ Implementation of the loss from the dense depth paper https://arxiv.org/pdf/1812.11941.pdf """ # Point-wise L1 loss l_depth = tf.reduce_mean(tf.math.abs(y_pred - y), axis=-1) # L1 loss over image gradients dy, dx = tf.image.image_gradients(y) dy_pred, dx_pred = tf.image.image_gradients(y_pred) l_grad = tf.reduce_mean(tf.math.abs(dy_pred - dy) + tf.math.abs(dx_pred - dx), axis=-1) # Structural Similarity (SSIM) l_ssim = (1 - tf.image.ssim(y, y_pred, 500)) / 2 return 0.1 * tf.reduce_mean(l_depth) + tf.reduce_mean(l_grad) + l_ssim