Files
fast-depth-tf/dense_depth_functional.py

95 lines
4.1 KiB
Python

import tensorflow.keras as keras
import tensorflow_datasets as tfds
import fast_depth_functional as fd
def dense_upsample_block(input, out_channels, skip_connection):
"""
Upsample block as described by dense depth in https://arxiv.org/pdf/1812.11941.pdf
"""
x = keras.layers.UpSampling2D(interpolation='bilinear')(input)
x = keras.layers.Concatenate()([x, skip_connection])
x = keras.layers.Conv2D(filters=out_channels,
kernel_size=3, strides=1, padding='same')(x)
x = keras.layers.Conv2D(filters=out_channels,
kernel_size=3, strides=1, padding='same')(x)
return keras.layers.LeakyReLU(alpha=0.2)(x)
def dense_depth(size, weights=None, shape=(224, 224, 3)):
input = keras.layers.Input(shape=shape)
densenet = dense_net(input, size, weights, shape)
densenet_output_channels = densenet.layers[-1].output.shape[-1]
# Reduce the feature set (pointwise)
decoder = keras.layers.Conv2D(
filters=densenet_output_channels, kernel_size=1, padding='same')(densenet.output)
# The actual decoder
decoder = dense_upsample_block(
decoder, densenet_output_channels // 2, densenet.get_layer('pool3_pool').output)
decoder = dense_upsample_block(
decoder, densenet_output_channels // 4, densenet.get_layer('pool2_pool').output)
decoder = dense_upsample_block(
decoder, densenet_output_channels // 8, densenet.get_layer('pool1').output)
decoder = dense_upsample_block(
decoder, densenet_output_channels // 16, densenet.get_layer('conv1/relu').output)
conv3 = keras.layers.Conv2D(
filters=1, kernel_size=3, strides=1, padding='same', name='conv3')(decoder)
return keras.Model(inputs=input, outputs=conv3, name='dense_depth')
def dense_net(input, size, weights=None, shape=(224, 224, 3)):
if size == 121:
densenet = keras.applications.DenseNet121(input_tensor=input, input_shape=shape, weights=weights,
include_top=False)
elif size == 169:
densenet = keras.applications.DenseNet169(input_tensor=input, input_shape=shape, weights=weights,
include_top=False)
else:
densenet = keras.applications.DenseNet201(input_tensor=input, input_shape=shape, weights=weights,
include_top=False)
for layer in densenet.layers:
layer.trainable = True
return densenet
def dense_nnconv5(size, weights=None, shape=(224, 224, 3), half_features=True):
input = keras.layers.Input(shape=shape)
densenet = dense_net(input, size, weights, shape)
densenet_output_shape = densenet.layers[-1].output.shape
# Reduce the feature set (pointwise)
decoder = keras.layers.Conv2D(filters=int(densenet_output_shape[-1]), kernel_size=1, padding='same',
input_shape=densenet_output_shape, name='conv2')(densenet.output)
# TODO: More intermediate layers here?
# Fast Depth Decoder
decoder = fd.nnconv5(decoder, densenet.get_layer('pool3_pool').output_shape[3], 1,
skip_connection=densenet.get_layer('pool3_pool').output)
decoder = fd.nnconv5(decoder, densenet.get_layer('pool2_pool').output_shape[3], 2,
skip_connection=densenet.get_layer('pool2_pool').output)
decoder = fd.nnconv5(decoder, densenet.get_layer('pool1').output_shape[3], 3,
skip_connection=densenet.get_layer('pool1').output)
decoder = fd.nnconv5(decoder, densenet.get_layer('conv1/relu').output_shape[3], 4,
skip_connection=densenet.get_layer('conv1/relu').output)
# Final Pointwise for depth extraction
decoder = keras.layers.Conv2D(1, 1, padding='same')(decoder)
decoder = keras.layers.BatchNormalization()(decoder)
decoder = keras.layers.ReLU(6.)(decoder)
return keras.Model(inputs=input, outputs=decoder, name="fast_dense_depth")
if __name__ == '__main__':
model = dense_depth(169, 'imagenet')
model.summary()
# model = dense_nnconv5(169, 'imagenet')
# model.summary()