Files
fast-depth-tf/losses.py
2021-04-14 12:38:51 +09:30

21 lines
637 B
Python

import tensorflow as tf
import tensorflow.keras.backend as K
def dense_depth_loss_function(y, y_pred):
"""
Implementation of the loss from the dense depth paper https://arxiv.org/pdf/1812.11941.pdf
"""
# Point-wise L1 loss
l_depth = K.mean(K.abs(y_pred - y), axis=-1)
# L1 loss over image gradients
dy, dx = tf.image.image_gradients(y)
dy_pred, dx_pred = tf.image.image_gradients(y_pred)
l_grad = K.mean(K.abs(dy_pred - dy) + K.abs(dx_pred - dx), axis=-1)
# Structural Similarity (SSIM)
l_ssim = (1 - tf.image.ssim(y, y_pred, 500)) / 2
return 0.1 * K.mean(l_depth) + l_grad + l_ssim