Add example of inferencing with keras using plaidml.
This commit is contained in:
28
GestureRecognition/keras_ex.py
Normal file
28
GestureRecognition/keras_ex.py
Normal file
@@ -0,0 +1,28 @@
|
||||
import time
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
os.environ["KERAS_BACKEND"] = "plaidml.keras.backend"
|
||||
|
||||
import keras
|
||||
import keras.applications as kapp
|
||||
from keras.datasets import cifar10
|
||||
|
||||
(x_train, y_train_cats), (x_test, y_test_cats) = cifar10.load_data()
|
||||
batch_size = 8
|
||||
x_train = x_train[:batch_size]
|
||||
x_train = np.repeat(np.repeat(x_train, 7, axis=1), 7, axis=2)
|
||||
model = kapp.VGG19()
|
||||
model.compile(optimizer='sgd', loss='categorical_crossentropy',
|
||||
metrics=['accuracy'])
|
||||
|
||||
print("Running initial batch (compiling tile program)")
|
||||
y = model.predict(x=x_train, batch_size=batch_size)
|
||||
|
||||
# Now start the clock and run 10 batches
|
||||
print("Timing inference...")
|
||||
start = time.time()
|
||||
for i in range(10):
|
||||
y = model.predict(x=x_train, batch_size=batch_size)
|
||||
print("Ran in {} seconds".format(time.time() - start))
|
||||
Reference in New Issue
Block a user