Update to working greyscale recognition

This commit is contained in:
DSTO\pivatom
2018-11-22 15:59:57 +10:30
parent 2b4f959572
commit 6638b3d131
4 changed files with 202 additions and 11 deletions

View File

@@ -0,0 +1,62 @@
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 22 14:16:46 2018
@author: pivatom
"""
import numpy as np
import cv2
img = cv2.imread('H:\car\GestureRecognition\IMG_0818.png', 1)
# Downscale the image
img = cv2.resize(img, None, fx=0.1, fy=0.1, interpolation = cv2.INTER_AREA)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_gray[img_gray[:,:] > 90] = 255
img_gray[img_gray[:,:] < 90] = 0
# Threshold to binary.
ret,img_thresh = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
# Doesn't take too long.
k = np.sum(img_thresh) / 255
x_ind = np.indices(img_thresh.shape[1])
coords = np.zeros(img_thresh.shape)
# generate individual coordinates for x then transpose the matrix o
#
# First sum x coordinates.
#xb = int(img_ind[img_thresh == 255].sum(axis=1).sum()/k)
#print(xb)
# Then sum y coordinates
#yb = int(img_ind[img_thresh == 255].sum(axis=0).sum()/k)
#print(yb)
x,y,k,xb,yb = 0,0,0,0,0
# this is inherently slow...like very very slow...
for pix in img_thresh:
for j in pix:
if j == 255:
k += 1
xb += x
yb += y
x += 1
y += 1
x = 0
centre = (int(xb/k), int(yb/k))
cv2.rectangle(img_thresh, centre, (centre[0] + 20, centre[1] + 20), (0,0,255), 3)
cv2.circle(img_thresh, centre, 140, (0,0,0), 3)
# Now need to trace around the circle to figure out where the fingers are.
cv2.imshow("Binary-cot-out", img_thresh)
cv2.waitKey(0)
cv2.destroyAllWindows()

View File

@@ -0,0 +1,61 @@
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 22 10:51:21 2018
@author: pivatom
"""
import numpy as np
import cv2
img = cv2.imread('H:\car\GestureRecognition\IMG_0818.png', 1)
# Downscale the image
img = cv2.resize(img, None, fx=0.1, fy=0.1, interpolation = cv2.INTER_AREA)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_gray[img_gray[:,:] > 90] = 255
img_gray[img_gray[:,:] < 90] = 0
# Threshold to binary.
ret,img_thresh = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
x,y,k,xb,yb = 0,0,0,0,0
# this is inherently slow...
for pix in img_thresh:
for j in pix:
if j == 255:
k += 1
xb += x
yb += y
x += 1
y += 1
x = 0
centre = (int(xb/k), int(yb/k))
print(centre)
cv2.rectangle(img_thresh, centre, (centre[0] + 20, centre[1] + 20), (0,0,255), 3)
cv2.circle(img_thresh, centre, 140, (0,0,0), 3)
# Now need to trace around the circle to figure out where the fingers are.
cv2.imshow("Binary-cot-out", img_thresh)
cv2.waitKey(0)
cv2.destroyAllWindows()
#img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
#lower_skin = np.array([2, 102, 153])
#upper_skin = np.array([7.5, 153, 255])
#
## Only need mask, as we can just use this to calculate the
#mask = cv2.inRange(img_hsv, lower_skin, upper_skin)
#
#cv2.imshow("Mask", mask)
#cv2.waitKey(0)
#cv2.destroyAllWindows()

View File

@@ -0,0 +1,49 @@
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 22 09:21:04 2018
@author: pivatom
"""
import numpy as np
import cv2
min_seg_threshold = 1.05
max_seg_threshold = 4
def calcSkinSample(event, x, y, flags, param):
if event == cv2.EVENT_FLAG_LBUTTON:
sample = img[x:x+10, y:y+10]
min = 255
max = 0
for line in sample:
avg = np.sum(line)/10
if avg < min:
min = avg
if avg > max:
max = avg
min_seg_threshold = min
max_seg_threshold = max
def draw_rect(event, x, y, flags, param):
if event == cv2.EVENT_FLAG_LBUTTON:
print("LbuttonClick")
cv2.rectangle(img, (x,y), (x+10, y+10), (0,0,255), 3)
img = cv2.imread('H:\car\GestureRecognition\IMG_0818.png', 1)
# Downscale the image
img = cv2.resize(img, None, fx=0.1, fy=0.1, interpolation = cv2.INTER_AREA)
cv2.namedWindow("Hand")
cv2.setMouseCallback("Hand", draw_rect)
# prevent divide by zero, by just forcing pixel to be ignored.
#np.where(img[:,:,1] == 0, 0, img[:,:,1])
#img[(img[:,:,2]/img[:,:,1] > min_seg_threshold) & (img[:,:,2]/img[:,:,1] < max_seg_threshold)] = [255,255,255]
while(1):
cv2.imshow("Hand", img)
if cv2.waitKey(0):
break
cv2.destroyAllWindows()

View File

@@ -1,15 +1,34 @@
from PIL import Image import numpy as np
from PIL import ImageDraw import cv2
img = Image.open('/Users/piv/Desktop/IMG_0818.png') img = cv2.imread('H:\car\GestureRecognition\IMG_0818.png', 1)
# Create a new image of the cutout. # Downscale the image
blkimg = Image.new('1', (img.width, img.height) img = cv2.resize(img, None, fx=0.1, fy=0.1, interpolation = cv2.INTER_AREA)
blkdraw = ImageDraw.Draw(blkimg)
for i in range(1, img.width): min_seg_threshold = 1.2
for j in range(1, img.height): max_seg_threshold = 1.8
# getpixel returns tuple (r,g,b,a)
pixel = img.getpixel((i, j))
if (pixel[0]/pixel[1]) > 1.05 and (pixel[0]/pixel[1]) < 4:
# prevent divide by zero, by just forcing pixel to be ignored.
np.where(img[:,:,1] == 0, 0, img[:,:,1])
img[(img[:,:,2]/img[:,:,1] > min_seg_threshold) & (img[:,:,2]/img[:,:,1] < max_seg_threshold)] = [255,255,255]
# Try removing image noise.
#img = cv2.fastNlMeansDenoising(img)
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# Remove non-hand parts
# Find centre of the hand
# Hand parts are white pixels.
# Find sum of each col/row to find the left/rightmost and top/bottommost white pixels.
# Have used a for loop but obviously that is going to be slow.
# Draw appropriate circle
# Calculate number of different peaks.
# Article just traced around the circle and counted number of times switched from
# zero to one.