Fix going outside of array bounds, and attempt to make CNN work.
This commit is contained in:
@@ -1,10 +1,13 @@
|
|||||||
from GestureRecognition.handrecogniser import HandRecogniser
|
from GestureRecognition.handrecogniser import HandRecogniser
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
class SimpleHandRecogniser(HandRecogniser):
|
class SimpleHandRecogniser(HandRecogniser):
|
||||||
def __init__(self, frame):
|
def __init__(self, frame):
|
||||||
self.img = frame
|
self.img = frame
|
||||||
|
self.graph = None
|
||||||
|
self.sess = None
|
||||||
|
|
||||||
def __calc_pos_y(self, x, radius, centre):
|
def __calc_pos_y(self, x, radius, centre):
|
||||||
"""
|
"""
|
||||||
@@ -89,9 +92,16 @@ class SimpleHandRecogniser(HandRecogniser):
|
|||||||
Calculates the actual gesture, returning the number of fingers
|
Calculates the actual gesture, returning the number of fingers
|
||||||
seen in the image.
|
seen in the image.
|
||||||
"""
|
"""
|
||||||
|
print('Getting Gesture')
|
||||||
if self.img is None:
|
if self.img is None:
|
||||||
return 0
|
print('There is no image')
|
||||||
|
return -1
|
||||||
|
# First cut out the frame using the neural network.
|
||||||
|
self.load_inference_graph()
|
||||||
|
print("loaded inference graph")
|
||||||
|
detections, scores = self.detect_hand_tensorflow(self.graph, self.sess)
|
||||||
|
|
||||||
|
print('Attempting to use pure hand recognition')
|
||||||
self.img_hsv = cv2.cvtColor(self.img, cv2.COLOR_BGR2HSV)
|
self.img_hsv = cv2.cvtColor(self.img, cv2.COLOR_BGR2HSV)
|
||||||
|
|
||||||
# Need to shift red pixels so they can be 0-20 rather than 250-~20
|
# Need to shift red pixels so they can be 0-20 rather than 250-~20
|
||||||
@@ -100,7 +110,9 @@ class SimpleHandRecogniser(HandRecogniser):
|
|||||||
self.img_hsv = self.__denoise(self.img_hsv)
|
self.img_hsv = self.__denoise(self.img_hsv)
|
||||||
self.__segment_image()
|
self.__segment_image()
|
||||||
|
|
||||||
|
print('calculating circle')
|
||||||
radius, centre = self.__calc_circle(self.mask)
|
radius, centre = self.__calc_circle(self.mask)
|
||||||
|
print('Got circle')
|
||||||
|
|
||||||
# Now go around the circle to calculate num of times going 0->255 or vice-versa.
|
# Now go around the circle to calculate num of times going 0->255 or vice-versa.
|
||||||
# First just do it the naive way with loops.
|
# First just do it the naive way with loops.
|
||||||
@@ -109,9 +121,32 @@ class SimpleHandRecogniser(HandRecogniser):
|
|||||||
prev_x = centre[0] - radius
|
prev_x = centre[0] - radius
|
||||||
prev_y = [self.__calc_pos_y(centre[0] - radius, radius, centre), self.__calc_pos_y(centre[0] - radius, radius, centre)]
|
prev_y = [self.__calc_pos_y(centre[0] - radius, radius, centre), self.__calc_pos_y(centre[0] - radius, radius, centre)]
|
||||||
num_change = 0
|
num_change = 0
|
||||||
for x in range(centre[0] - radius + 1, centre[0] + radius):
|
|
||||||
|
# Make sure x is also within bounds.
|
||||||
|
x_start = centre[0] - radius + 1
|
||||||
|
if x_start < 0:
|
||||||
|
x_start = 0
|
||||||
|
|
||||||
|
x_end = centre[0] + radius
|
||||||
|
if x_end >= self.mask.shape[1]:
|
||||||
|
x_end = self.mask.shape[1] - 1
|
||||||
|
print(x_start)
|
||||||
|
print(x_end)
|
||||||
|
print(self.mask.shape)
|
||||||
|
for x in range(x_start, x_end):
|
||||||
|
# Need to check circle is inside the bounds.
|
||||||
ypos = self.__calc_pos_y(x, radius, centre)
|
ypos = self.__calc_pos_y(x, radius, centre)
|
||||||
|
# y above centre (ypos) and y below radius)
|
||||||
y = [ypos, centre[1] - (ypos-centre[1])]
|
y = [ypos, centre[1] - (ypos-centre[1])]
|
||||||
|
|
||||||
|
if y[0] < 0:
|
||||||
|
y[0] = 0
|
||||||
|
if y[0] >= self.mask.shape[0]:
|
||||||
|
y[0] = self.mask.shape[0] - 1
|
||||||
|
if y[1] < 0:
|
||||||
|
y[1] = 0
|
||||||
|
if y[1] >= self.mask.shape[0]:
|
||||||
|
y[1] = self.mask.shape[0] - 1
|
||||||
if(self.mask[y[0], x] != self.mask[prev_y[0], prev_x]):
|
if(self.mask[y[0], x] != self.mask[prev_y[0], prev_x]):
|
||||||
num_change += 1
|
num_change += 1
|
||||||
if self.mask[y[1], x] != self.mask[prev_y[1], prev_x] and y[0] != y[1]:
|
if self.mask[y[1], x] != self.mask[prev_y[1], prev_x] and y[0] != y[1]:
|
||||||
@@ -119,81 +154,125 @@ class SimpleHandRecogniser(HandRecogniser):
|
|||||||
prev_x = x
|
prev_x = x
|
||||||
prev_y = y
|
prev_y = y
|
||||||
|
|
||||||
|
print('Finished calculating, returning')
|
||||||
|
|
||||||
return num_change / 2 - 1
|
return num_change / 2 - 1
|
||||||
|
|
||||||
def detect_hand(self, weights_path, config_path, conf_thresh = 0.5, nms_thresh = 0.4):
|
def setFrame(self, frame):
|
||||||
'''
|
self.img = frame
|
||||||
Detects if there is a hand in the image. If there is (above a significant confidence threshold)
|
|
||||||
then the function will set the img property to the location of the hand according to its bounding box.
|
# Source: Victor Dibia
|
||||||
'''
|
# Link: https://github.com/victordibia/handtracking
|
||||||
# Most of this code is from here: www.arunponnusamy.com/yolo-object-detection-opencv-python.html
|
# Taken the code straight from his example, as it works perfectly. This is specifically
|
||||||
# Also https://github.com/opencv/opencv/blob/3.4/samples/dnn/object_detection.py
|
# from the load_inference_graph method that he wrote, and will load the graph into
|
||||||
|
# memory if one has not already been loaded for this object.
|
||||||
|
def load_inference_graph(self):
|
||||||
|
"""Loads a tensorflow model checkpoint into memory"""
|
||||||
|
|
||||||
|
if self.graph != None and self.sess != None:
|
||||||
|
# Don't load more than once.
|
||||||
|
return
|
||||||
|
|
||||||
|
PATH_TO_CKPT = '/Users/piv/Documents/Projects/car/GestureRecognition/frozen_inference_graph.pb'
|
||||||
|
# load frozen tensorflow model into memory
|
||||||
|
detection_graph = tf.Graph()
|
||||||
|
with detection_graph.as_default():
|
||||||
|
od_graph_def = tf.GraphDef()
|
||||||
|
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
|
||||||
|
serialized_graph = fid.read()
|
||||||
|
od_graph_def.ParseFromString(serialized_graph)
|
||||||
|
tf.import_graph_def(od_graph_def, name='')
|
||||||
|
sess = tf.Session(graph=detection_graph)
|
||||||
|
self.graph = detection_graph
|
||||||
|
self.sess = sess
|
||||||
|
|
||||||
|
|
||||||
|
# Source: Victor Dibia
|
||||||
|
# Link: https://github.com/victordibia/handtracking
|
||||||
|
# Taken the code straight from his example, as it works perfectly. This is specifically
|
||||||
|
# from the detect_hand method that he wrote, as other processing is required for the
|
||||||
|
# hand recognition to work correctly.
|
||||||
|
def detect_hand_tensorflow(self, detection_graph, sess):
|
||||||
|
""" Detects hands in a frame using a CNN
|
||||||
|
|
||||||
|
detection_graph -- The CNN to use to detect the hand.
|
||||||
|
sess -- THe tensorflow session for the given graph
|
||||||
|
"""
|
||||||
|
|
||||||
|
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
||||||
|
|
||||||
|
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
|
||||||
|
|
||||||
|
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
|
||||||
|
|
||||||
|
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
|
||||||
|
|
||||||
|
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
|
||||||
|
|
||||||
|
img_expanded = np.expand_dims(self.img, axis=0)
|
||||||
|
|
||||||
|
(boxes, scores, classes, num) = sess.run(
|
||||||
|
[detection_boxes, detection_scores, detection_classes, num_detections],
|
||||||
|
feed_dict={image_tensor, img_expanded})
|
||||||
|
print('finished detection')
|
||||||
|
return np.squeeze(boxes), np.squeeze(scores)
|
||||||
|
|
||||||
|
def detect_hand_opencv(self, detection_graph, sess):
|
||||||
|
"""Performs hand detection using a CNN from tensorflow using opencv.
|
||||||
|
|
||||||
|
detection_graph -- The CNN to use to detect the hand.
|
||||||
|
sess -- THe tensorflow session for the given graph
|
||||||
|
"""
|
||||||
if self.img is None:
|
if self.img is None:
|
||||||
return 0
|
return
|
||||||
|
|
||||||
height = self.img.shape[0]
|
height = self.img.shape[0]
|
||||||
width = self.img.shape[1]
|
width = self.img.shape[1]
|
||||||
|
|
||||||
scale = 0.5
|
scale = 0.5
|
||||||
|
|
||||||
classes = None # Stores classes used for classification
|
classes = None
|
||||||
|
|
||||||
net = cv2.dnn.readNet(weights_path, config_path)
|
net = cv2.dnn.readNetFromTensorflow(detection_graph, sess)
|
||||||
|
|
||||||
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
|
# width is scaled weirdly to ensure we keep tbe same ratio as the original image.
|
||||||
|
net.setInput(cv2.dnn.blobFromImage(self.img, scale, size=(300, 300 * (width/height)), swapRB=True, crop=False))
|
||||||
|
netOut = net.forward()
|
||||||
|
|
||||||
outNames = net.getUnconnectedOutLayersNames()
|
# Format output to look same as tensorflow output.
|
||||||
|
scores = []
|
||||||
blob = cv2.dnn.blobFromImage(self.img, scale, (416,416), (0,0,0), True, False)
|
|
||||||
|
|
||||||
net.setInput(blob)
|
|
||||||
|
|
||||||
outs = net.forward(outNames)
|
|
||||||
|
|
||||||
# Getting the output layer.
|
|
||||||
layerNames = net.getLayerNames()
|
|
||||||
lastLayerId = net.getLayerId(layerNames[-1])
|
|
||||||
lastLayer = net.getLayer(lastLayerId)
|
|
||||||
|
|
||||||
classIds = []
|
|
||||||
confidences = []
|
|
||||||
boxes = []
|
boxes = []
|
||||||
if lastLayer.type == 'DetectionOutput':
|
|
||||||
# Check we are using an actual detection module.
|
|
||||||
# Will return a 1x1xnx7 blob, where n is number of detections.
|
|
||||||
# Tuple for each detection: [batchId, classId, confidence, left, top, right, bottom]
|
|
||||||
|
|
||||||
for out in outs:
|
for out in netOut:
|
||||||
for detection in out[0,0]:
|
for detection in out[0,0]:
|
||||||
confidence = detection[2]
|
scores.append(detection[2])
|
||||||
if confidence > conf_thresh:
|
boxes.append(detection[3], detection[4], detection[5], detection[6])
|
||||||
# WIll need to verify this first, but given code said this is needed.
|
# Only doing first class as only trying to find the hand.
|
||||||
left = int(detection[3] * width)
|
break
|
||||||
top = int(detection[4] * height)
|
return np.array(boxes), np.array(scores)
|
||||||
right = int(detection[5] * width)
|
|
||||||
bottom = int(detection[6] * height)
|
|
||||||
classIds.append(int(detection[1]) - 1)
|
|
||||||
confidences.append(float(confidence))
|
|
||||||
boxes.append((left, top, right, bottom))
|
|
||||||
|
|
||||||
|
def get_best_hand(self, boxes, scores, conf_thresh, nms_thresh):
|
||||||
|
"""
|
||||||
|
Gets the best hand bounding box by inspecting confidence scores and overlapping
|
||||||
|
boxes, as well as the overall size of each box to determine which hand (if multiple present)
|
||||||
|
should be tested to recognise.
|
||||||
|
"""
|
||||||
|
# First remove any boxes below confidence threshold
|
||||||
|
confident_bs = boxes[scores > conf_thresh]
|
||||||
|
|
||||||
# Remove duplicate/overlapping boxes -> makes sure only detect one hand in an area.
|
# Then use NMS to get rid of heavily overlapping boxes.
|
||||||
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_thresh, nms_thresh)
|
# This wasn't used in the tensorflow example that was found, however probably a
|
||||||
|
# good idea to use it just in case.
|
||||||
|
indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thresh, nms_thresh)
|
||||||
|
|
||||||
for i in indices:
|
# Finally calculate area of each box to determine which hand is clearest (biggest in image)
|
||||||
i = i[0]
|
# Just does the most confident for now.
|
||||||
box = boxes[i]
|
|
||||||
left = box[0]
|
|
||||||
top = box[1]
|
|
||||||
right = box[2]
|
|
||||||
bottom = box[3]
|
|
||||||
# Now draw the box if we want to.
|
|
||||||
|
|
||||||
# OR can just get the box that is a hand with the maximum confidence/maximum box area -> this implies closest hand...
|
|
||||||
max_conf = 0
|
max_conf = 0
|
||||||
max_index = 0
|
max_index = 0
|
||||||
for conf in confidences:
|
for conf in scores:
|
||||||
if conf > max_conf:
|
if conf > max_conf:
|
||||||
max_conf = conf
|
max_conf = conf
|
||||||
max_index = i
|
max_index = conf
|
||||||
|
return boxes[max_index]
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user