Add 'car/' from commit 'eee0e8dc445691e600680f4abc77f2814b20b054'
git-subtree-dir: car git-subtree-mainline:1d29a5526cgit-subtree-split:eee0e8dc44
This commit is contained in:
381
car/GestureRecognition/SimpleHandRecogniser.py
Normal file
381
car/GestureRecognition/SimpleHandRecogniser.py
Normal file
@@ -0,0 +1,381 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
from GestureRecognition.handrecogniser import HandRecogniser
|
||||
|
||||
class SimpleHandRecogniser(HandRecogniser):
|
||||
def __init__(self, frame):
|
||||
self.img = frame
|
||||
self.graph = None
|
||||
self.sess = None
|
||||
self.img_cut = None
|
||||
|
||||
def __calc_pos_y(self, x, radius, centre):
|
||||
"""
|
||||
Calculates the position of y on a given circle radius and centre, given coordinate x.
|
||||
"""
|
||||
return int((radius**2 - (x - centre[0])**2)**(1/2) + centre[1])
|
||||
|
||||
def __segment_image(self):
|
||||
"""
|
||||
Segments the hand from the rest of the image to get a threshold.
|
||||
"""
|
||||
self.img_cut = cv2.GaussianBlur(self.img_cut, (5, 5), 0)
|
||||
|
||||
lower_skin = (0, 0, 153)
|
||||
upper_skin = (45, 153, 255)
|
||||
|
||||
# Only need mask, as we can just use this to do the hand segmentation.
|
||||
self.img_cut = cv2.inRange(self.img_cut, lower_skin, upper_skin)
|
||||
|
||||
# Apply another blur to rmeove any small holes/noise
|
||||
self.img_cut = self.__denoise(self.img_cut)
|
||||
_, self.img_cut = cv2.threshold(self.img_cut, 50, 255, cv2.THRESH_BINARY)
|
||||
|
||||
def __denoise(self, image):
|
||||
"""
|
||||
Applies a 5x5 gaussian blur to remove noise from the image.
|
||||
"""
|
||||
return cv2.GaussianBlur(image, (5, 5), 0)
|
||||
|
||||
def __calc_circle(self, image, radius_percent=0.6):
|
||||
"""
|
||||
Calculates the equation of the circle (radius, centre) from a given
|
||||
threshold image, so that the circle is the center of gravity of the
|
||||
given threshold pixels, and the radius is by default 55% of the total
|
||||
size.
|
||||
"""
|
||||
k = np.sum(self.img_cut) / 255
|
||||
|
||||
# Taking indices for num of rows.
|
||||
x_ind = np.arange(0, self.img_cut.shape[1])
|
||||
y_ind = np.arange(0, self.img_cut.shape[0])
|
||||
coords_x = np.zeros((self.img_cut.shape[0], self.img_cut.shape[1]))
|
||||
coords_y = np.zeros((self.img_cut.shape[0], self.img_cut.shape[1]))
|
||||
coords_x[:, :] = x_ind
|
||||
|
||||
# Even this is extremely quick as it goes through rows in the numpy array,
|
||||
# which in python is much faster than columns
|
||||
for element in y_ind:
|
||||
coords_y[element, :] = element
|
||||
|
||||
# Now need to get the average x value and y value for centre of gravity
|
||||
centre = (int(np.sum(coords_x[self.img_cut == 255])/k), int(np.sum(coords_y[self.img_cut == 255])/k))
|
||||
|
||||
# Calculate radius of circle:
|
||||
# May need to calculate diameter as well.
|
||||
# Just take min/max x values and y values
|
||||
x_min = np.min(coords_x[self.img_cut == 255])
|
||||
x_max = np.max(coords_x[self.img_cut == 255])
|
||||
y_min = np.min(coords_y[self.img_cut == 255])
|
||||
y_max = np.max(coords_y[self.img_cut == 255])
|
||||
|
||||
candidate_pts = [(x_min, y_min), (x_min, y_max), (x_max, y_min), (x_max, y_max)]
|
||||
radius = 0
|
||||
|
||||
# Check with each point to see which is furthest from the centre.
|
||||
for pt in candidate_pts:
|
||||
# Calculate Euclydian Distance
|
||||
new_distance = ((pt[0] - centre[0])**2 + (pt[1] - centre[1])**2)**(1/2)
|
||||
if new_distance > radius:
|
||||
radius = new_distance
|
||||
|
||||
radius = int(radius * radius_percent)
|
||||
|
||||
return radius, centre
|
||||
|
||||
def __calc_circles(self, image, radius_percent_range=[0.6, 0.8], step = 0.1):
|
||||
"""
|
||||
Calculates the equation of the circle (radius, centre), but with
|
||||
several radii so that we can get a more accurate estimate of from a given
|
||||
threshold image, so that the circle is the center of gravity of the
|
||||
given threshold pixels.
|
||||
"""
|
||||
k = np.sum(self.img_cut) / 255
|
||||
|
||||
# Taking indices for num of rows.
|
||||
x_ind = np.arange(0,self.img_cut.shape[1])
|
||||
y_ind = np.arange(0,self.img_cut.shape[0])
|
||||
coords_x = np.zeros((self.img_cut.shape[0], self.img_cut.shape[1]))
|
||||
coords_y = np.zeros((self.img_cut.shape[0], self.img_cut.shape[1]))
|
||||
coords_x[:,:] = x_ind
|
||||
|
||||
# Even this is extremely quick as it goes through rows in the numpy array, which in python is much faster than columns
|
||||
for element in y_ind:
|
||||
coords_y[element,:] = element
|
||||
|
||||
# Now need to get the average x value and y value for centre of gravity
|
||||
centre = (int(np.sum(coords_x[self.img_cut == 255])/k), int(np.sum(coords_y[self.img_cut == 255])/k))
|
||||
|
||||
# Calculate radius of circle:
|
||||
# May need to calculate diameter as well.
|
||||
# Just take min/max x values and y values
|
||||
x_min = np.min(coords_x[self.img_cut == 255])
|
||||
x_max = np.max(coords_x[self.img_cut == 255])
|
||||
y_min = np.min(coords_y[self.img_cut == 255])
|
||||
y_max = np.max(coords_y[self.img_cut == 255])
|
||||
|
||||
candidate_pts = [(x_min, y_min), (x_min, y_max), (x_max, y_min), (x_max, y_max)]
|
||||
radius = 0
|
||||
|
||||
# Check with each point to see which is furthest from the centre.
|
||||
for pt in candidate_pts:
|
||||
# Calculate Euclydian Distance
|
||||
new_distance = ((pt[0] - centre[0])**2 + (pt[1] - centre[1])**2)**(1/2)
|
||||
if new_distance > radius:
|
||||
radius = new_distance
|
||||
|
||||
radii = []
|
||||
for i in range(radius_percent_range[0], radius_percent_range[1], step):
|
||||
radii += int(radius * i)
|
||||
|
||||
return radii, centre
|
||||
|
||||
def __shift_pixels(self, image, shift_radius):
|
||||
image[:, :, 0] = image[:, :, 0] + shift_radius
|
||||
image[:, :, 0] = np.where(image[:, :, 0] > 179, image[:, :, 0] - 179, image[:, :, 0])
|
||||
return image
|
||||
|
||||
def set_frame(self, frame):
|
||||
self.img = frame
|
||||
|
||||
# Source: Victor Dibia
|
||||
# Link: https://github.com/victordibia/handtracking
|
||||
# Taken the code straight from his example, as it works perfectly. This is specifically
|
||||
# from the load_inference_graph method that he wrote, and will load the graph into
|
||||
# memory if one has not already been loaded for this object.
|
||||
# def load_inference_graph(self):
|
||||
# """Loads a tensorflow model checkpoint into memory"""
|
||||
|
||||
# if self.graph != None and self.sess != None:
|
||||
# # Don't load more than once, to save time...
|
||||
# return
|
||||
|
||||
# PATH_TO_CKPT = '/Users/piv/Documents/Projects/car/GestureRecognition/frozen_inference_graph.pb'
|
||||
# # load frozen tensorflow model into memory
|
||||
# detection_graph = tf.Graph()
|
||||
# with detection_graph.as_default():
|
||||
# od_graph_def = tf.GraphDef()
|
||||
# with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
|
||||
# serialized_graph = fid.read()
|
||||
# od_graph_def.ParseFromString(serialized_graph)
|
||||
# tf.import_graph_def(od_graph_def, name='')
|
||||
# sess = tf.Session(graph=detection_graph)
|
||||
# self.graph = detection_graph
|
||||
# self.sess = sess
|
||||
|
||||
|
||||
# Source: Victor Dibia
|
||||
# Link: https://github.com/victordibia/handtracking
|
||||
# Taken the code straight from his example, as it works perfectly. This is specifically
|
||||
# from the detect_hand method that he wrote, as other processing is required for the
|
||||
# hand recognition to work correctly.
|
||||
# def detect_hand_tensorflow(self, detection_graph, sess):
|
||||
# """ Detects hands in a frame using a CNN
|
||||
|
||||
# detection_graph -- The CNN to use to detect the hand.
|
||||
# sess -- THe tensorflow session for the given graph
|
||||
# """
|
||||
|
||||
# image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
||||
|
||||
# detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
|
||||
|
||||
# detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
|
||||
|
||||
# detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
|
||||
|
||||
# num_detections = detection_graph.get_tensor_by_name('num_detections:0')
|
||||
|
||||
# img_expanded = np.expand_dims(self.img, axis=0)
|
||||
|
||||
# (boxes, scores, classes, num) = sess.run(
|
||||
# [detection_boxes, detection_scores, detection_classes, num_detections],
|
||||
# feed_dict={image_tensor: img_expanded})
|
||||
# print('finished detection')
|
||||
# return np.squeeze(boxes), np.squeeze(scores)
|
||||
|
||||
def load_cv_net(self, graph_path, names_path):
|
||||
"""Loads a tensorflow neural object detection network using openCV
|
||||
|
||||
Arguments
|
||||
graph_path: Path to the tensorflow frozen inference graph (something.pb)
|
||||
names_path: Path to the tensorflow (something.pbtext) file.
|
||||
"""
|
||||
self.net = cv2.dnn.readNetFromTensorflow(graph_path, names_path)
|
||||
|
||||
def detect_hand_opencv(self):
|
||||
"""Performs hand detection using a CNN from tensorflow using opencv.
|
||||
|
||||
detection_graph -- The CNN to use to detect the hand.
|
||||
sess -- THe tensorflow session for the given graph
|
||||
"""
|
||||
if self.img is None:
|
||||
return
|
||||
|
||||
rows = self.img.shape[0]
|
||||
cols = self.img.shape[1]
|
||||
|
||||
self.net.setInput(cv2.dnn.blobFromImage(self.img, size=(300, 300), swapRB=True, crop=False))
|
||||
cv_out = self.net.forward()
|
||||
|
||||
boxes = []
|
||||
scores = []
|
||||
|
||||
for detection in cv_out[0, 0, :, :]:
|
||||
score = float(detection[2])
|
||||
# TODO: Need to make this the confidence threshold...
|
||||
if score > 0.6:
|
||||
left = detection[3] * cols
|
||||
top = detection[4] * rows
|
||||
right = detection[5] * cols
|
||||
bottom = detection[6] * rows
|
||||
boxes.append((left, top, right, bottom))
|
||||
scores.append(score)
|
||||
else:
|
||||
# Scores are in descending order...
|
||||
break
|
||||
|
||||
return boxes, scores
|
||||
|
||||
def get_best_hand(self, boxes, scores, conf_thresh, nms_thresh):
|
||||
"""
|
||||
Gets the best hand bounding box by inspecting confidence scores and overlapping
|
||||
boxes, as well as the overall size of each box to determine which hand (if multiple present)
|
||||
should be tested to recognise.
|
||||
"""
|
||||
print(scores)
|
||||
boxes = boxes[scores > conf_thresh]
|
||||
scores = scores[scores > conf_thresh]
|
||||
# Use NMS to get rid of heavily overlapping boxes.
|
||||
# This wasn't used in the tensorflow example that was found, however probably a
|
||||
# good idea to use it just in case.
|
||||
print(boxes.shape)
|
||||
if boxes.shape[0] == 0:
|
||||
print("No good boxes found")
|
||||
return None
|
||||
elif boxes.shape[0] == 1:
|
||||
print("Only one good box!")
|
||||
box = boxes[0]
|
||||
box[0] = box[0] * self.img.shape[0]
|
||||
box[1] = box[1] * self.img.shape[1]
|
||||
box[2] = box[2] * self.img.shape[0]
|
||||
box[3] = box[3] * self.img.shape[1]
|
||||
return box.astype(int)
|
||||
else:
|
||||
boxes[:][2] = ((boxes[:][2] - boxes[:][0]) * self.img.shape[0]).astype(int)
|
||||
boxes[:][3] = ((boxes[:][3] - boxes[:][1]) * self.img.shape[1]).astype(int)
|
||||
boxes[:][0] = (boxes[:][0] * self.img.shape[0]).astype(int)
|
||||
boxes[:][1] = (boxes[:][1] * self.img.shape[1]).astype(int)
|
||||
|
||||
# Can't seem to get this to work...
|
||||
# indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thresh, nms_thresh)
|
||||
|
||||
print("Num boxes: %s" % boxes.shape[0])
|
||||
# Finally calculate area of each box to determine which hand is clearest (biggest in image)
|
||||
# Just does the most confident for now.
|
||||
best_box = boxes[0]
|
||||
best_index = None
|
||||
i = 0
|
||||
for box in boxes:
|
||||
if box[2] * box[3] > best_box[2] * best_box[3]:
|
||||
best_box = box
|
||||
best_index = i
|
||||
i += 1
|
||||
return boxes[i - 1]
|
||||
|
||||
def get_gesture(self):
|
||||
"""
|
||||
Calculates the actual gesture, returning the number of fingers
|
||||
seen in the image.
|
||||
"""
|
||||
print('Getting Gesture')
|
||||
if self.img is None:
|
||||
print('There is no image')
|
||||
return -1
|
||||
# First cut out the frame using the neural network.
|
||||
# self.load_inference_graph()
|
||||
# print("loaded inference graph")
|
||||
# detections, scores = self.detect_hand_tensorflow(self.graph, self.sess)
|
||||
|
||||
print('Loading openCV net')
|
||||
self.load_cv_net('/Users/piv/Documents/Projects/car/GestureRecognition/frozen_inference_graph.pb',
|
||||
'/Users/piv/Documents/Projects/car/GestureRecognition/graph.pbtxt')
|
||||
|
||||
detections, scores = self.detect_hand_opencv()
|
||||
|
||||
# print("Getting best hand")
|
||||
# best_hand = self.get_best_hand(detections, scores, 0.7, 0.5)
|
||||
# if best_hand is not None:
|
||||
# self.img = self.img[best_hand[0] - 30:best_hand[2] + 30, best_hand[1] - 30:best_hand[3] + 30]
|
||||
|
||||
if len(detections) > 0:
|
||||
print("Cutting out the hand!")
|
||||
self.img_cut = self.img[detections[0] - 30:detections[2] + 30, detections[1] - 30:detections[3] + 30]
|
||||
else:
|
||||
self.img_cut = self.img
|
||||
|
||||
print('Attempting to use pure hand recognition')
|
||||
self.img_cut = cv2.cvtColor(self.img_cut, cv2.COLOR_BGR2HSV)
|
||||
|
||||
# Need to shift red pixels so they can be 0-20 rather than 250-~20
|
||||
self.img_cut = self.__shift_pixels(self.img_cut, 30)
|
||||
|
||||
self.img_cut = self.__denoise(self.img_cut)
|
||||
self.__segment_image()
|
||||
|
||||
print('calculating circle')
|
||||
# Could calculate multiple circles to get probability
|
||||
# for each gesture (i.e. calc num of each gesture recongised and take percentage
|
||||
# as the probability).
|
||||
radius, centre = self.__calc_circle(self.img_cut)
|
||||
print('Got circle')
|
||||
|
||||
# Now go around the circle to calculate num of times going 0->255 or vice-versa.
|
||||
# First just do it the naive way with loops.
|
||||
# Equation of the circle:
|
||||
# y = sqrt(r2 - (x-c)2) + c
|
||||
prev_x = centre[0] - radius
|
||||
prev_y = [self.__calc_pos_y(centre[0] - radius, radius, centre),
|
||||
self.__calc_pos_y(centre[0] - radius, radius, centre)]
|
||||
num_change = 0
|
||||
|
||||
# Make sure x is also within bounds.
|
||||
x_start = centre[0] - radius + 1
|
||||
if x_start < 0:
|
||||
x_start = 0
|
||||
|
||||
x_end = centre[0] + radius
|
||||
if x_end >= self.img_cut.shape[1]:
|
||||
x_end = self.img_cut.shape[1] - 1
|
||||
|
||||
for x in range(x_start, x_end):
|
||||
# Need to check circle is inside the bounds.
|
||||
ypos = self.__calc_pos_y(x, radius, centre)
|
||||
# y above centre (ypos) and y below radius)
|
||||
y = [ypos, centre[1] - (ypos-centre[1])]
|
||||
|
||||
if y[0] < 0:
|
||||
y[0] = 0
|
||||
if y[0] >= self.img_cut.shape[0]:
|
||||
y[0] = self.img_cut.shape[0] - 1
|
||||
if y[1] < 0:
|
||||
y[1] = 0
|
||||
if y[1] >= self.img_cut.shape[0]:
|
||||
y[1] = self.img_cut.shape[0] - 1
|
||||
if(self.img_cut[y[0], x] != self.img_cut[prev_y[0], prev_x]):
|
||||
num_change += 1
|
||||
if self.img_cut[y[1], x] != self.img_cut[prev_y[1], prev_x] and y[0] != y[1]:
|
||||
num_change += 1
|
||||
prev_x = x
|
||||
prev_y = y
|
||||
|
||||
print('Finished calculating, returning')
|
||||
print(num_change)
|
||||
return int(num_change / 2 - 1), self.img
|
||||
|
||||
def get_gesture_multiple_radii(self):
|
||||
pass
|
||||
|
||||
def calc_hand_batch(self, batch):
|
||||
pass
|
||||
Reference in New Issue
Block a user