Remove print statements to optimise code
This commit is contained in:
@@ -8,14 +8,15 @@ Created on Thu Nov 22 10:51:21 2018
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
img = cv2.imread('H:\car\GestureRecognition\IMG_0818.png', 1)
|
||||
img = cv2.imread('H:\car\GestureRecognition\IMG_0825.jpg', 1)
|
||||
img = cv2.imread('H:\car\GestureRecognition\IMG_0818.jpg', 1)
|
||||
|
||||
# Downscale the image
|
||||
img = cv2.resize(img, None, fx=0.1, fy=0.1, interpolation = cv2.INTER_AREA)
|
||||
|
||||
e1 = cv2.getTickCount()
|
||||
|
||||
# Hand Localization...
|
||||
# Hand Localization... possibly with YOLOv3? v2 is faster though...
|
||||
|
||||
|
||||
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
||||
@@ -27,7 +28,7 @@ img_hsv[:,:,0] = np.where(img_hsv[:,:,0] > 179, img_hsv[:,:,0] - 179, img_hsv[:,
|
||||
img_hsv = cv2.GaussianBlur(img_hsv,(5,5),0)
|
||||
|
||||
lower_skin = (0, 0, 153)
|
||||
upper_skin = (50, 153, 255)
|
||||
upper_skin = (45, 153, 255)
|
||||
|
||||
# Only need mask, as we can just use this to do the hand segmentation.
|
||||
mask = cv2.inRange(img_hsv, lower_skin, upper_skin)
|
||||
@@ -36,7 +37,8 @@ mask = cv2.inRange(img_hsv, lower_skin, upper_skin)
|
||||
blur = cv2.GaussianBlur(mask,(5,5),0)
|
||||
ret, img_thresh = cv2.threshold(blur, 50, 255, cv2.THRESH_BINARY)
|
||||
|
||||
img_thresh = mask
|
||||
# Uncomment if not using blur and threshold.
|
||||
# img_thresh = mask
|
||||
|
||||
k = np.sum(img_thresh) / 255
|
||||
|
||||
@@ -76,17 +78,14 @@ for pt in candidate_pts:
|
||||
if new_distance > radius:
|
||||
radius = new_distance
|
||||
|
||||
radius = int(radius * 0.55)
|
||||
radius = int(radius * 0.52)
|
||||
|
||||
# 140 needs to be replaced with a predicted value. i.e. not be a magic number.
|
||||
cv2.circle(img_thresh, centre, 140, (120,0,0), 3)
|
||||
# cv2.circle(img_thresh, centre, radius, (120,0,0), 3)
|
||||
|
||||
def calc_pos_y(x):
|
||||
return int((radius**2 - (x - centre[0])**2)**(1/2) + centre[1])
|
||||
|
||||
print(img_thresh.shape)
|
||||
print(centre)
|
||||
print(radius)
|
||||
# Now go around the circle to calculate num of times going 0->255 or vice-versa.
|
||||
# First just do it the naive way with loops.
|
||||
# Equation of the circle:
|
||||
@@ -94,15 +93,14 @@ print(radius)
|
||||
# Will just increment x to check, no need to loop y as well.
|
||||
# This is extremely slow, need to speed it up by removing for loop.
|
||||
# Brings speed down to 20 fps.
|
||||
# This is actually fast, it was just the print debug statements that made it slow, takes just 6ms...
|
||||
# Could try a kerel method?
|
||||
prev_x = centre[0] - radius
|
||||
prev_y = [calc_pos_y(centre[0] - radius), calc_pos_y(centre[0] - radius)]
|
||||
print(prev_y)
|
||||
num_change = 0
|
||||
for x in range(centre[0] - radius + 1, centre[0] + radius):
|
||||
ypos = calc_pos_y(x)
|
||||
y = [ypos, centre[1] - (ypos-centre[1])]
|
||||
print(y)
|
||||
if(img_thresh[y[0], x] != img_thresh[prev_y[0], prev_x]):
|
||||
num_change += 1
|
||||
if img_thresh[y[1], x] != img_thresh[prev_y[1], prev_x] and y[0] != y[1]:
|
||||
|
||||
Reference in New Issue
Block a user