import cv2 as cv cvNet = cv.dnn.readNetFromTensorflow('frozen_inference_graph.pb', 'graph.pbtxt') img = cv.imread('IMG_0825.jpg') img = cv.resize(img, None, fx=0.1, fy=0.1, interpolation = cv.INTER_AREA) rows = img.shape[0] cols = img.shape[1] print(str(rows) + " " + str(cols)) cvNet.setInput(cv.dnn.blobFromImage(img, size=(300, 300), swapRB=True, crop=False)) cvOut = cvNet.forward() for detection in cvOut[0,0,:,:]: score = float(detection[2]) if score > 0.6: left = detection[3] * cols top = detection[4] * rows right = detection[5] * cols bottom = detection[6] * rows cv.rectangle(img, (int(left), int(top)), (int(right), int(bottom)), (23, 230, 210), thickness=2) cv.imshow('img', img) cv.waitKey()