# -*- coding: utf-8 -*- """ Created on Thu Nov 22 14:16:46 2018 @author: pivatom """ import numpy as np import cv2 img = cv2.imread('H:\car\GestureRecognition\IMG_0818.png', 1) # Downscale the image img = cv2.resize(img, None, fx=0.1, fy=0.1, interpolation = cv2.INTER_AREA) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_gray[img_gray[:,:] > 90] = 255 img_gray[img_gray[:,:] < 90] = 0 # Threshold to binary. ret,img_thresh = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY) # Doesn't take too long. k = np.sum(img_thresh) / 255 x_ind = np.indices(img_thresh.shape[1]) coords = np.zeros(img_thresh.shape) # generate individual coordinates for x then transpose the matrix o # # First sum x coordinates. #xb = int(img_ind[img_thresh == 255].sum(axis=1).sum()/k) #print(xb) # Then sum y coordinates #yb = int(img_ind[img_thresh == 255].sum(axis=0).sum()/k) #print(yb) x,y,k,xb,yb = 0,0,0,0,0 # this is inherently slow...like very very slow... for pix in img_thresh: for j in pix: if j == 255: k += 1 xb += x yb += y x += 1 y += 1 x = 0 centre = (int(xb/k), int(yb/k)) cv2.rectangle(img_thresh, centre, (centre[0] + 20, centre[1] + 20), (0,0,255), 3) cv2.circle(img_thresh, centre, 140, (0,0,0), 3) # Now need to trace around the circle to figure out where the fingers are. cv2.imshow("Binary-cot-out", img_thresh) cv2.waitKey(0) cv2.destroyAllWindows()