from handrecogniser import HandRecogniser import numpy as np import cv2 class SimpleHandRecogniser(HandRecogniser): def __init__(self, image_path = ""): self._image_path = image_path def load_image(self, image_path = None): if image_path is not None: self._image_path = image_path self.img = cv2.imread(self._image_path, 1) self.img = cv2.resize(self.img, None, fx=0.1, fy=0.1, interpolation = cv2.INTER_AREA) def __calc_pos_y(self, x, radius, centre): """ Calculates the position of y on a given circle radius and centre, given coordinate x. """ return int((radius**2 - (x - centre[0])**2)**(1/2) + centre[1]) def __segment_image(self): """ Segments the hand from the rest of the image to get a threshold. """ # Need to shift red pixels so they can be 0-20 rather than 250-~20 self.img_hsv[:,:,0] = self.img_hsv[:,:,0] + 30 self.img_hsv[:,:,0] = np.where(self.img_hsv[:,:,0] > 179, self.img_hsv[:,:,0] - 179, self.img_hsv[:,:,0]) self.img_hsv = cv2.GaussianBlur(self.img_hsv,(5,5),0) lower_skin = (0, 0, 153) upper_skin = (50, 153, 255) # Only need mask, as we can just use this to do the hand segmentation. self.mask = cv2.inRange(self.img_hsv, lower_skin, upper_skin) ret, self.mask = cv2.threshold(self.mask, 50, 255, cv2.THRESH_BINARY) def __denoise(self, image): """ Applies a 5x5 gaussian blur to remove noise from the image. """ image = cv2.GaussianBlur(image,(5,5),0) def __calc_circle(self, image): """ Calculates the equation of the circle (radius, centre) from a given threshold image. """ k = np.sum(self.mask) / 255 # Taking indices for num of rows. x_ind = np.arange(0,self.mask.shape[1]) y_ind = np.arange(0,self.mask.shape[0]) coords_x = np.zeros((self.mask.shape[0], self.mask.shape[1])) coords_y = np.zeros((self.mask.shape[0], self.mask.shape[1])) coords_x[:,:] = x_ind # Even this is extremely quick as it goes through rows in the numpy array, which in python is much faster than columns for element in y_ind: coords_y[element,:] = element # Now need to get the average x value and y value for centre of gravity centre = (int(np.sum(coords_x[self.mask == 255])/k), int(np.sum(coords_y[self.mask == 255])/k)) # Calculate radius of circle: # May need to calculate diameter as well. # Just take min/max x values and y values x_min = np.min(coords_x[self.mask == 255]) x_max = np.max(coords_x[self.mask == 255]) y_min = np.min(coords_y[self.mask == 255]) y_max = np.max(coords_y[self.mask == 255]) candidate_pts = [(x_min, y_min), (x_min, y_max), (x_max, y_min), (x_max, y_max)] radius = 0 # Check with each point to see which is furthest from the centre. for pt in candidate_pts: # Calculate Euclydian Distance new_distance = ((pt[0] - centre[0])**2 + (pt[1] - centre[1])**2)**(1/2) if new_distance > radius: radius = new_distance radius = int(radius * 0.55) return radius, centre def get_gesture(self): """ Calculates the actual gesture. """ if not self.img: return 0 self.img_hsv = cv2.cvtColor(self.img, cv2.COLOR_BGR2HSV) self.__segment_image() radius, centre = self.__calc_circle(self.mask) # Now go around the circle to calculate num of times going 0->255 or vice-versa. # First just do it the naive way with loops. # Equation of the circle: # y = sqrt(r2 - (x-c)2) + c # This is extremely slow, need to speed it up by removing for loop. # Brings speed down to 20 fps. # Could try a kerel method? # Also can try contour detection. prev_x = centre[0] - radius prev_y = [self.__calc_pos_y(centre[0] - radius, radius, centre), self.__calc_pos_y(centre[0] - radius, radius, centre)] num_change = 0 for x in range(centre[0] - radius + 1, centre[0] + radius): ypos = self.__calc_pos_y(x, radius, centre) y = [ypos, centre[1] - (ypos-centre[1])] print(y) if(self.mask[y[0], x] != self.mask[prev_y[0], prev_x]): num_change += 1 if self.mask[y[1], x] != self.mask[prev_y[1], prev_x] and y[0] != y[1]: num_change += 1 prev_x = x prev_y = y return num_change / 2 - 1