Files
breezyslam/c/coreslam.c

608 lines
16 KiB
C

/*
* coreslam.c adapted from CoreSLAM.c, CoreSLAM_state.c, and CoreSLAM.h
* downloaded from openslam.org on 01 January 2014. Contains implementations
* of scan and map methods.
*
* Copyright (C) 2014 Simon D. Levy
*
* This code is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this code. If not, see <http:#www.gnu.org/licenses/>.
*
* Change log
*
* 07-FEB-2014 : Simon D. Levy - Initial release
* 01-MAR-2014 : SDL - Converted millimeters to meters for API
* 21-JUN-2014 : SDL - Added support for SSE and NEON
* 10-JUL-2014 : SDL - Changed Laser scan rate and angles from int to double
* 21-JUL-2014 : SDL - Made RMHC position search avoid looping when max count is zero
* 23-JUL-2014 : SDL - Simplified laser detection angle min, max to total angle
* 07-SEP-2014 : SDL - Migrated to github
*/
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <string.h>
#include <math.h>
#include "coreslam.h"
#include "coreslam_internals.h"
#include "random.h"
/* For angle/distance interpolation ------------------------------- */
typedef struct angle_distance_pair {
float angle;
int distance;
} angle_distance_pair_t;
typedef struct interpolation {
angle_distance_pair_t * angle_distance_pairs;
} interpolation_t;
static int angle_compar(const void * v1, const void * v2)
{
angle_distance_pair_t * pair1 = (angle_distance_pair_t *)v1;
angle_distance_pair_t * pair2 = (angle_distance_pair_t *)v2;
return pair1->angle < pair2->angle ? -1 : 1;
}
static void interpolate(scan_t * scan, float * lidar_angles_deg, int * lidar_distances_mm, int scan_size)
{
// Sort angles, preserving indices
interpolation_t * interpolate = (interpolation_t *)scan->interpolation;
angle_distance_pair_t * pairs = interpolate->angle_distance_pairs;
int k;
for (k=0; k<scan_size; ++k)
{
angle_distance_pair_t * pair = &pairs[k];
pair->angle = lidar_angles_deg[k];
pair->distance = lidar_distances_mm[k];
}
qsort(pairs, scan_size, sizeof(angle_distance_pair_t), angle_compar);
for (k=0; k<scan_size; ++k)
{
angle_distance_pair_t pair = pairs[k];
printf("%3.1f %05d\n", pair.angle, pair.distance);
}
printf("\n");
}
/* Local helpers--------------------------------------------------- */
static void * safe_malloc(size_t size)
{
void * v = malloc(size);
if (!v)
{
fprintf(stderr, "Unable to allocate %lu bytes\n", (unsigned long)size);
exit(1);
}
return v;
}
static double * double_alloc(int size)
{
return (double *)safe_malloc(size * sizeof(double));
}
static void
swap(int * a, int * b)
{
int tmp = *a;
*a = *b;
*b = tmp;
}
static int roundup(double x)
{
return (int)floor(x + 0.5);
}
static int
out_of_bounds(int value, int bound)
{
return value < 0 || value >= bound;
}
static int
clip(int *xyc, int * yxc, int xy, int yx, int map_size)
{
if (*xyc < 0)
{
if (*xyc == xy)
{
return 1;
}
*yxc += (*yxc - yx) * (- *xyc) / (*xyc - xy);
*xyc = 0;
}
if (*xyc >= map_size)
{
if (*xyc == xy)
{
return 1;
}
*yxc += (*yxc - yx) * (map_size - 1 - *xyc) / (*xyc - xy);
*xyc = map_size - 1;
}
return 0;
}
static void
map_laser_ray(
pixel_t * map_pixels,
int map_size,
int x1,
int y1,
int x2,
int y2,
int xp,
int yp,
int value,
int alpha)
{
int x2c = x2;
int y2c = y2;
if (out_of_bounds(x1, map_size) || out_of_bounds(y1, map_size))
{
return;
}
if (!(clip(&x2c, &y2c, x1, y1, map_size) || clip(&y2c, &x2c, y1, x1, map_size)))
{
int dx = abs(x2 - x1);
int dy = abs(y2 - y1);
int dxc = abs(x2c - x1);
int dyc = abs(y2c - y1);
int incptrx = (x2 > x1) ? 1 : -1;
int incptry = (y2 > y1) ? map_size : -map_size;
int sincv = (value > NO_OBSTACLE) ? 1 : -1;
int derrorv = 0;
if (dx > dy)
{
derrorv = abs(xp - x2);
}
else
{
swap(&dx, &dy);
swap(&dxc, &dyc);
swap(&incptrx, &incptry);
derrorv = abs(yp - y2);
}
if (!derrorv)
{ /* XXX should probably throw an exception */
fprintf(stderr, "map_update: No error gradient: try increasing hole width\n");
exit(1);
}
else
{
int error = 2 * dyc - dxc;
int horiz = 2 * dyc;
int diago = 2 * (dyc - dxc);
int errorv = derrorv / 2;
int incv = (value - NO_OBSTACLE) / derrorv;
int incerrorv = value - NO_OBSTACLE - derrorv * incv;
pixel_t * ptr = map_pixels + y1 * map_size + x1;
int pixval = NO_OBSTACLE;
int x = 0;
for (x = 0; x <= dxc; x++, ptr += incptrx)
{
if (x > dx - 2 * derrorv)
{
if (x <= dx - derrorv)
{
pixval += incv;
errorv += incerrorv;
if (errorv > derrorv)
{
pixval += sincv;
errorv -= derrorv;
}
}
else
{
pixval -= incv;
errorv -= incerrorv;
if (errorv < 0)
{
pixval -= sincv;
errorv += derrorv;
}
}
}
/* Integration into the map */
*ptr = ((256 - alpha) * (*ptr) + alpha * pixval) >> 8;
if (error > 0)
{
ptr += incptry;
error += diago;
} else
{
error += horiz;
}
}
}
}
}
static void
scan_update_xy(
scan_t * scan,
int offset,
int distance,
int scanval,
double horz_mm,
double rotation)
{
int j;
for (j=0; j<scan->span; ++j)
{
double k = (double)(offset*scan->span+j) * scan->detection_angle_degrees / (scan->size * scan->span - 1);
double angle = radians(-scan->detection_angle_degrees/2 + k * rotation);
double x = distance * cos(angle) - k * horz_mm;
double y = distance * sin(angle);
scan->value[scan->npoints] = scanval;
scan->x_mm[scan->npoints] = x;
scan->y_mm[scan->npoints] = y;
scan->npoints++;
}
}
/* Exported functions --------------------------------------------------------*/
int *
int_alloc(
int size)
{
return (int *)safe_malloc(size * sizeof(int));
}
float *
float_alloc(
int size)
{
return (float *)safe_malloc(size * sizeof(float));
}
void
map_init(
map_t * map,
int size_pixels,
double size_meters)
{
int npix = size_pixels * size_pixels;
int k = 0;
map->pixels = (pixel_t *)safe_malloc(npix * sizeof(pixel_t));
for (k=0; k<npix; ++k)
{
map->pixels[k] = (OBSTACLE + NO_OBSTACLE) / 2;
}
map->size_pixels = size_pixels;
map->size_meters = size_meters;
/* precompute scale for efficiency */
map->scale_pixels_per_mm = size_pixels / (size_meters * 1000);
}
void
map_free(
map_t * map)
{
free(map->pixels);
}
void map_string(
map_t map,
char * str)
{
sprintf(str, "size = %d x %d pixels | = %f meters",
map.size_pixels, map.size_pixels, map.size_meters);
}
void
map_update(
map_t * map,
scan_t * scan,
position_t position,
int map_quality,
double hole_width_mm)
{
double position_theta_radians = radians(position.theta_degrees);
double costheta = cos(position_theta_radians);
double sintheta = sin(position_theta_radians);
int x1 = roundup(position.x_mm * map->scale_pixels_per_mm);
int y1 = roundup(position.y_mm * map->scale_pixels_per_mm);
int i = 0;
for (i = 0; i != scan->npoints; i++)
{
double x2p = costheta * scan->x_mm[i] - sintheta * scan->y_mm[i];
double y2p = sintheta * scan->x_mm[i] + costheta * scan->y_mm[i];
int xp = roundup((position.x_mm + x2p) * map->scale_pixels_per_mm);
int yp = roundup((position.y_mm + y2p) * map->scale_pixels_per_mm);
double dist = sqrt(x2p * x2p + y2p * y2p);
double add = hole_width_mm / 2 / dist;
x2p *= map->scale_pixels_per_mm * (1 + add);
y2p *= map->scale_pixels_per_mm * (1 + add);
{
int x2 = roundup(position.x_mm * map->scale_pixels_per_mm + x2p);
int y2 = roundup(position.y_mm * map->scale_pixels_per_mm + y2p);
int value = OBSTACLE;
int q = map_quality;
if (scan->value[i] == NO_OBSTACLE)
{
q = map_quality / 4;
value = NO_OBSTACLE;
}
map_laser_ray(map->pixels, map->size_pixels, x1, y1, x2, y2, xp, yp, value, q);
}
}
}
void
map_get(
map_t * map,
char * bytes)
{
int k;
for (k=0; k<map->size_pixels*map->size_pixels; ++k)
{
bytes[k] = map->pixels[k] >> 8;
}
}
void
map_set(
map_t * map,
char * bytes)
{
int k;
for (k=0; k<map->size_pixels*map->size_pixels; ++k)
{
map->pixels[k] = bytes[k];
map->pixels[k] <<= 8;
}
}
void scan_init(
scan_t * scan,
int span,
int size,
double scan_rate_hz,
double detection_angle_degrees,
double distance_no_detection_mm,
int detection_margin,
double offset_mm)
{
scan->x_mm = double_alloc(size*span);
scan->y_mm = double_alloc(size*span);
scan->value = int_alloc(size*span);
scan->span = span;
scan->size = size;
scan->rate_hz = scan_rate_hz;
scan->detection_angle_degrees = detection_angle_degrees;
scan->distance_no_detection_mm = distance_no_detection_mm;
scan->detection_margin = detection_margin;
scan->offset_mm = offset_mm;
scan->npoints = 0;
scan->obst_npoints = 0;
/* for angle/distance interpolation */
interpolation_t * interpolation = (interpolation_t *)safe_malloc(sizeof(interpolation_t));
interpolation->angle_distance_pairs = (angle_distance_pair_t *)safe_malloc(size*sizeof(angle_distance_pair_t));
scan->interpolation = interpolation;
/* assure size multiple of 4 for SSE */
scan->obst_x_mm = float_alloc(size*span+4);
scan->obst_y_mm = float_alloc(size*span+4);
}
void
scan_free(
scan_t * scan)
{
free(scan->x_mm);
free(scan->y_mm);
free(scan->value);
free(scan->obst_x_mm);
free(scan->obst_y_mm);
interpolation_t * interpolation = (interpolation_t *)scan->interpolation;
free(interpolation->angle_distance_pairs);
free(interpolation);
}
void scan_string(
scan_t scan,
char * str)
{
sprintf(str, "%d obstacle points | %d free points", scan.obst_npoints, scan.npoints-scan.obst_npoints);
}
void
scan_update(
scan_t * scan,
float * lidar_angles_deg,
int * lidar_distances_mm,
int scan_size,
double hole_width_mm,
double velocities_dxy_mm,
double velocities_dtheta_degrees)
{
/* interpolate scan distances by angles if indicated */
if (lidar_angles_deg)
{
interpolate(scan, lidar_angles_deg, lidar_distances_mm, scan_size);
}
/* Take velocity into account */
int degrees_per_second = (int)(scan->rate_hz * 360);
double horz_mm = velocities_dxy_mm / degrees_per_second;
double rotation = 1 + velocities_dtheta_degrees / degrees_per_second;
/* Span the laser scans to better cover the space */
int i = 0;
scan->npoints = 0;
scan->obst_npoints = 0;
for (i=scan->detection_margin+1; i<scan->size-scan->detection_margin; ++i)
{
int lidar_value_mm = lidar_distances_mm[i];
/* No obstacle */
if (lidar_value_mm == 0)
{
scan_update_xy(scan, i, (int)scan->distance_no_detection_mm, NO_OBSTACLE, horz_mm, rotation);
}
/* Obstacle */
else if (lidar_value_mm > hole_width_mm / 2)
{
int oldstart = scan->npoints;
int j = 0;
scan_update_xy(scan, i, lidar_value_mm, OBSTACLE, horz_mm, rotation);
/* Store obstacles separately for SSE */
for (j=oldstart; j<scan->npoints; ++j)
{
if (scan->value[j] == OBSTACLE)
{
scan->obst_x_mm[scan->obst_npoints] = (float)scan->x_mm[j];
scan->obst_y_mm[scan->obst_npoints] = (float)scan->y_mm[j];
scan->obst_npoints++;
}
}
}
}
}
position_t
rmhc_position_search(
position_t start_pos,
map_t * map,
scan_t * scan,
double sigma_xy_mm,
double sigma_theta_degrees,
int max_search_iter,
void * randomizer)
{
position_t currentpos = start_pos;
position_t bestpos = start_pos;
position_t lastbestpos = start_pos;
int current_distance = distance_scan_to_map(map, scan, currentpos);
int lowest_distance = current_distance;
int last_lowest_distance = current_distance;
int counter = 0;
while (counter < max_search_iter)
{
currentpos = lastbestpos;
currentpos.x_mm = random_normal(randomizer, currentpos.x_mm, sigma_xy_mm);
currentpos.y_mm = random_normal(randomizer, currentpos.y_mm, sigma_xy_mm);
currentpos.theta_degrees = random_normal(randomizer, currentpos.theta_degrees, sigma_theta_degrees);
current_distance = distance_scan_to_map(map, scan, currentpos);
/* -1 indicates infinity */
if ((current_distance > -1) && (current_distance < lowest_distance))
{
lowest_distance = current_distance;
bestpos = currentpos;
}
else
{
counter++;
}
if (counter > max_search_iter / 3)
{
if (lowest_distance < last_lowest_distance)
{
lastbestpos = bestpos;
last_lowest_distance = lowest_distance;
counter = 0;
sigma_xy_mm *= 0.5;
sigma_theta_degrees *= 0.5;
}
}
}
return bestpos;
}