Files
breezyslam/examples/log2pkl.py
2017-11-12 16:49:23 -05:00

126 lines
3.9 KiB
Python
Executable File

#!/usr/bin/env python
'''
log2pkl.py : BreezySLAM Python demo. Reads logfile with odometry and scan data
from Paris Mines Tech and pickles the map file for loading by another
program
Copyright (C) 2014 Simon D. Levy
This code is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this code. If not, see <http://www.gnu.org/licenses/>.
'''
# Map size, scale
MAP_SIZE_PIXELS = 800
MAP_SIZE_METERS = 32
from breezyslam.algorithms import Deterministic_SLAM, RMHC_SLAM
from mines import MinesLaser, Rover, load_data
from progressbar import ProgressBar
from sys import argv, exit, stdout
from time import time
import pickle
def main():
# Bozo filter for input args
if len(argv) < 3:
print('Usage: %s <dataset> <use_odometry> <random_seed>' % argv[0])
print('Example: %s exp2 1 9999' % argv[0])
exit(1)
# Grab input args
dataset = argv[1]
use_odometry = True if int(argv[2]) else False
seed = int(argv[3]) if len(argv) > 3 else 0
# Load the data from the file, ignoring timestamps
_, lidars, odometries = load_data('.', dataset)
# Build a robot model if we want odometry
robot = Rover() if use_odometry else None
# Create a CoreSLAM object with laser params and optional robot object
slam = RMHC_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
if seed \
else Deterministic_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)
# Report what we're doing
nscans = len(lidars)
print('Processing %d scans with%s odometry / with%s particle filter...' % \
(nscans, \
'' if use_odometry else 'out', '' if seed else 'out'))
progbar = ProgressBar(0, nscans, 80)
# Start with an empty trajectory of positions
trajectory = []
# Start timing
start_sec = time()
# Loop over scans
for scanno in range(nscans):
if use_odometry:
# Convert odometry to velocities
velocities = robot.computeVelocities(odometries[scanno])
# Update SLAM with lidar and velocities
slam.update(lidars[scanno], velocities)
else:
# Update SLAM with lidar alone
slam.update(lidars[scanno])
# Get new position
x_mm, y_mm, theta_degrees = slam.getpos()
# Add new position to trajectory
trajectory.append((x_mm, y_mm))
# Tame impatience
progbar.updateAmount(scanno)
stdout.write('\r%s' % str(progbar))
stdout.flush()
# Report elapsed time
elapsed_sec = time() - start_sec
print('\n%d scans in %f sec = %f scans / sec' % (nscans, elapsed_sec, nscans/elapsed_sec))
# Create a byte array to receive the computed maps
mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)
# Get final map
slam.getmap(mapbytes)
# Pickle the map to a file
pklname = dataset + '.map'
print('Writing map to file ' + pklname)
pickle.dump(mapbytes, open(pklname, 'wb'))
# Helpers ---------------------------------------------------------
def mm2pix(mm):
return int(mm / (MAP_SIZE_METERS * 1000. / MAP_SIZE_PIXELS))
main()