Files
breezyslam/examples/pltslamshow.py
2016-08-11 13:11:42 -04:00

267 lines
8.7 KiB
Python

'''
pltslamshow.py - Pyplot classes for displaying maps and robots in SLAM projects
Copyright (C) 2016 Simon D. Levy and Matt Lubas
This code is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this code. If not, see <http://www.gnu.org/licenses/>.
'''
# Robot display params
ROBOT_COLOR_BGR = (0, 0, 255)
ROBOT_HEIGHT = 16
ROBOT_WIDTH = 10
ROBOT_HEIGHT_MM = 500
ROBOT_WIDTH_MM = 300
# Scan point display params
SCANPOINT_RADIUS = 1
SCANPOINT_COLOR_BGR = (0, 255, 0)
# Display params for odometry-based velocity
SENSOR_V_MAX_MM = 1000
SENSOR_THETA_MAX_DEG = 20
SENSOR_BAR_X = 150
SENSOR_BAR_Y_OFFSET = 3
SENSOR_BAR_WIDTH = 20
SENSOR_BAR_MAX_HEIGHT = 200
SENSOR_TEXT_X = 20
SENSOR_V_Y = 30
SENSOR_THETA_Y = 80
SENSOR_LABEL_COLOR_BGR = (255,0,0)
SENSOR_POSITIVE_COLOR_BGR = (0,255,0)
SENSOR_NEGATIVE_COLOR_BGR = (0,0,255)
# Trajectory display params
TRAJECTORY_COLOR_BGR = (255, 0, 0)
import cv
import matplotlib.pyplot as plt
import matplotlib.lines as lines
# Arbitrary font for OpenCV
FONT_FACE = cv.CV_FONT_HERSHEY_COMPLEX
from math import sin, cos, radians
def _rotate(x, y, r, theta_deg):
theta = radians(theta_deg)
dx = r * cos(theta)
dy = r * sin(theta)
return x+dx, y+dy
class SlamShow(object):
def __init__(self, map_size_pixels, map_scale_mm_per_pixel, window_name):
# Store constants for update
self.map_size_pixels = map_size_pixels
self.map_scale_mm_per_pixel = map_scale_mm_per_pixel
self.window_name = window_name
# Create a byte array to display the map with a color overlay
self.bgrbytes = bytearray(map_size_pixels * map_size_pixels * 3)
# Create an empty OpenCV image to be filled with map bytes
self.image = cv.CreateImageHeader((map_size_pixels,map_size_pixels), cv.IPL_DEPTH_8U, 3)
# Create an OpenCV window for displaying the map
cv.NamedWindow(window_name)
# Set up font for displaying velocities
self.font = cv.InitFont(FONT_FACE, 1, 1)
# Display initial empty image
cv.SetData(self.image, self.bgrbytes, self.map_size_pixels*3)
cv.ShowImage(self.window_name, self.image)
# Make a nice big (10"x10") figure
fig = plt.figure(figsize=(10,10))
# Store Python ID of figure to detect window close
self.figid = id(fig)
fig.canvas.set_window_title('SLAM 2D')
self.ax = fig.gca()
self.ax.set_aspect("auto")
self.ax.set_autoscale_on(True)
map_size_mm = map_scale_mm_per_pixel * map_size_pixels
self.ax.set_xlim([0, map_size_mm])
self.ax.set_ylim([0, map_size_mm])
self.ax.set_xlabel('X (cm)')
self.ax.set_ylabel('Y (cm)')
self.ax.grid(False)
def displayMap(self, mapbytes):
# Interleave the grayscale map bytes into the color bytes
self.bgrbytes[0::3] = mapbytes
self.bgrbytes[1::3] = mapbytes
self.bgrbytes[2::3] = mapbytes
# Put color bytes into image
cv.SetData(self.image, self.bgrbytes, self.map_size_pixels*3)
def displayRobot(self, (x_mm, y_mm, theta_deg), color=ROBOT_COLOR_BGR, scale=1, line_thickness=1):
# Use a very short arrow shaft to orient the head of the arrow
dx, dy = _rotate(0, 0, .1, theta_deg)
self.ax.arrow(x_mm, y_mm, dx, dy, head_width=ROBOT_WIDTH_MM, head_length=ROBOT_HEIGHT_MM, fc='r', ec='r')
# Get a polyline (e.g. triangle) to represent the robot icon
robot_points = self.robot_polyline(scale)
# Rotate the polyline by the current angle... would use rotate instead of this
robot_points = map(lambda pt: rotate(pt, theta_deg), robot_points)
# Convert the robot position from meters to pixels
x_pix, y_pix = self.mm2pix(x_mm), self.mm2pix(y_mm)
# Move the polyline to the current robot position ... would use rotate instead of this?
robot_points = map(lambda pt: (x_pix+pt[0], y_pix+pt[1]), robot_points)
# Add an icon for the robot
cv.PolyLine(self.image, [robot_points], True, color, line_thickness)
# Use a very short arrow shaft to orient the head of the arrow
x = 0
y = 0
dx, dy = _rotate(x,y, .01, 0)
def displayScan(self, scan, offset_mm = (0,0), color=SCANPOINT_COLOR_BGR):
for point in scan:
cv.Circle(self.image, (self.mm2pix(point[0]+offset_mm[0]), self.mm2pix(point[1]+offset_mm[1])), \
SCANPOINT_RADIUS, color)
def displayVelocities(self, dxy_mm, dtheta_deg):
# Add velocity bars
self.show_velocity(dxy_mm, SENSOR_V_MAX_MM, ' dXY', SENSOR_V_Y)
self.show_velocity(dtheta_deg, SENSOR_THETA_MAX_DEG, 'dTheta', SENSOR_THETA_Y)
def displayTrajectory(self, trajectory):
for k in range(1, len(trajectory)):
x1_mm, y1_mm = trajectory[k-1]
x2_mm, y2_mm = trajectory[k]
cv.Line(self.image,
(self.mm2pix(x1_mm), self.mm2pix(y1_mm)), \
(self.mm2pix(x2_mm), self.mm2pix(y2_mm)), \
TRAJECTORY_COLOR_BGR)
def refresh(self):
# If we have a new figure, something went wrong (closing figure failed)
if self.figid != id(plt.gcf()):
return False
# Redraw current objects without blocking
plt.draw()
# Refresh display, setting flag on window close or keyboard interrupt
try:
plt.pause(.01)
except:
return False
# Display image
cv.ShowImage(self.window_name, self.image)
# Force image display, returning False if user hit ESC, True otherwise
key = cvdisplay()
return False if key==27 else True
def waitkey(self, action):
print('Hit any key to %s ...' % action)
key = -1
while True:
key = cvdisplay()
if key > -1:
break
return key
# Puts text in the image to label the velocity display
def show_velocity(self, value, valspan, label, y):
cv.PutText(self.image, label+':', (SENSOR_TEXT_X, y), self.font, SENSOR_LABEL_COLOR_BGR)
bar_x1 = SENSOR_BAR_X + SENSOR_BAR_MAX_HEIGHT
bar_y1 = y + SENSOR_BAR_Y_OFFSET
bar_x2 = bar_x1 + int(value / valspan * SENSOR_BAR_MAX_HEIGHT)
bar_y2 = y - SENSOR_BAR_WIDTH + SENSOR_BAR_Y_OFFSET
bar_color = SENSOR_NEGATIVE_COLOR_BGR if value < 0 else SENSOR_POSITIVE_COLOR_BGR
cv.Rectangle(self.image, (bar_x1, bar_y1), (bar_x2, bar_y2), bar_color, cv.CV_FILLED)
# Builds an array of points for a polyline representing the robot, pointing
# rightward and centered at (0,0).
# Currently builds an isoceles triangle pointing rightward
def robot_polyline(self, scale):
dx = 500
dy = 500
xlft = -ROBOT_HEIGHT / 2 * scale
xrgt = ROBOT_HEIGHT / 2 * scale
ybot = ROBOT_WIDTH / 2 * scale
ytop = -ROBOT_HEIGHT / 2 * scale
return [(xlft,ybot), (xrgt,0), (xlft,ytop)]
#XXX possible solution to use lines instead of arrow?
def three_lines(self, pt1, pt2, pt3):
x1,y1 = pt1
x2,y2 = pt2
x3,y3 = pt3
# Converts millimeters to pixels
def mm2pix(self, mm):
return int(mm / float(self.map_scale_mm_per_pixel))
# Helpers -------------------------------------------------------------
# Forces OpenCV image display, returning id of key it or -1 if none
def cvdisplay():
return cv.WaitKey(1)
# Rotates a point by a specified number of degrees
def rotate(pt, deg):
rad = radians(deg)
c = cos(rad)
s = sin(rad)
x,y = pt
return int(x*c - y*s), int(x*s + y*c)