Build Functional Model, remove subclassed model
Functional models are way easier to work with, and I don't need any advanced features that would require model subclassing
This commit is contained in:
@@ -5,59 +5,53 @@ Functional version of fastdepth model. Note that this doesn't work at the moment
|
||||
'''
|
||||
|
||||
|
||||
def _depthwise_conv_block(inputs,
|
||||
pointwise_conv_filters,
|
||||
depth_multiplier=1,
|
||||
strides=(1, 1),
|
||||
block_id=1):
|
||||
channel_axis = 1 if keras.backend.image_data_format() == 'channels_first' else -1
|
||||
pointwise_conv_filters = int(pointwise_conv_filters)
|
||||
|
||||
if strides == (1, 1):
|
||||
x = inputs
|
||||
else:
|
||||
x = keras.layers.ZeroPadding2D(((0, 1), (0, 1)), name='conv_pad_%d' % block_id)(
|
||||
inputs)
|
||||
x = keras.layers.DepthwiseConv2D((3, 3),
|
||||
padding='same' if strides == (1, 1) else 'valid',
|
||||
depth_multiplier=depth_multiplier,
|
||||
strides=strides,
|
||||
use_bias=False,
|
||||
name='conv_dw_%d' % block_id)(
|
||||
x)
|
||||
x = keras.layers.BatchNormalization(
|
||||
axis=channel_axis, name='conv_dw_%d_bn' % block_id)(
|
||||
x)
|
||||
x = keras.layers.ReLU(6., name='conv_dw_%d_relu' % block_id)(x)
|
||||
|
||||
x = keras.layers.Conv2D(
|
||||
pointwise_conv_filters, (1, 1),
|
||||
padding='same',
|
||||
use_bias=False,
|
||||
strides=(1, 1),
|
||||
name='conv_pw_%d' % block_id)(
|
||||
x)
|
||||
x = keras.layers.BatchNormalization(
|
||||
axis=channel_axis, name='conv_pw_%d_bn' % block_id)(
|
||||
x)
|
||||
def FDDepthwiseBlock(inputs,
|
||||
out_channels,
|
||||
block_id=1):
|
||||
x = keras.layers.DepthwiseConv2D(5, padding='same')(inputs)
|
||||
x = keras.layers.BatchNormalization()(x)
|
||||
x = keras.layers.ReLU(6.)(x)
|
||||
x = keras.layers.Conv2D(out_channels, 1, padding='same')(x)
|
||||
x = keras.layers.BatchNormalization()(x)
|
||||
return keras.layers.ReLU(6., name='conv_pw_%d_relu' % block_id)(x)
|
||||
|
||||
|
||||
def make_fastdepth_functional():
|
||||
# This doesn't work, at least right now...
|
||||
mobilenet = keras.applications.MobileNet(include_top=False)
|
||||
input = keras.layers.Input(shape=(224, 224, 3))
|
||||
x = mobilenet(input)
|
||||
x = _depthwise_conv_block(x, 512, block_id=14)
|
||||
x = _depthwise_conv_block(x, 256, block_id=15)
|
||||
x = keras.layers.Add()([x, mobilenet.get_layer('conv_pw_5_relu').output])
|
||||
x = _depthwise_conv_block(x, 128, block_id=16)
|
||||
x = keras.layers.Add()([x, mobilenet.get_layer('conv_pw_3_relu').output])
|
||||
x = _depthwise_conv_block(x, 64, block_id=17)
|
||||
x = keras.layers.Add()([x, mobilenet.get_layer('conv_pw_1_relu').output])
|
||||
x = _depthwise_conv_block(x, 32, block_id=18)
|
||||
x = input
|
||||
mobilenet = keras.applications.MobileNet(include_top=False, weights=None)
|
||||
for layer in mobilenet.layers:
|
||||
x = layer(x)
|
||||
if layer.name == 'conv_pw_5_relu':
|
||||
conv5 = x
|
||||
elif layer.name == 'conv_pw_3_relu':
|
||||
conv3 = x
|
||||
elif layer.name == 'conv_pw_1_relu':
|
||||
conv1 = x
|
||||
|
||||
x = keras.layers.Conv2D(1, 1)(x)
|
||||
x = FDDepthwiseBlock(x, 512, block_id=14)
|
||||
# TODO: Bilinear interpolation
|
||||
# x = keras.layers.experimental.preprocessing.Resizing(14, 14)
|
||||
# Nearest neighbour interpolation, used by fast depth paper
|
||||
x = keras.layers.experimental.preprocessing.Resizing(14, 14, interpolation='nearest')(x)
|
||||
x = FDDepthwiseBlock(x, 256, block_id=15)
|
||||
x = keras.layers.experimental.preprocessing.Resizing(28, 28, interpolation='nearest')(x)
|
||||
x = keras.layers.Add()([x, conv5])
|
||||
x = FDDepthwiseBlock(x, 128, block_id=16)
|
||||
x = keras.layers.experimental.preprocessing.Resizing(56, 56, interpolation='nearest')(x)
|
||||
x = keras.layers.Add()([x, conv3])
|
||||
x = FDDepthwiseBlock(x, 64, block_id=17)
|
||||
x = keras.layers.experimental.preprocessing.Resizing(112, 112, interpolation='nearest')(x)
|
||||
x = keras.layers.Add()([x, conv1])
|
||||
x = FDDepthwiseBlock(x, 32, block_id=18)
|
||||
x = keras.layers.experimental.preprocessing.Resizing(224, 224, interpolation='nearest')(x)
|
||||
|
||||
x = keras.layers.Conv2D(1, 1, padding='same')(x)
|
||||
x = keras.layers.BatchNormalization()(x)
|
||||
x = keras.layers.ReLU()(x)
|
||||
return keras.Model(input, x, name="fast_depth")
|
||||
x = keras.layers.ReLU(6.)(x)
|
||||
return keras.Model(inputs=input, outputs=x, name="fast_depth")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
make_fastdepth_functional().summary()
|
||||
|
||||
64
main.py
64
main.py
@@ -1,70 +1,6 @@
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
|
||||
import tensorflow_datasets as tfds
|
||||
|
||||
|
||||
class DecodeConv(keras.layers.Layer):
|
||||
def __init__(self, out_filters, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
# Should be depthwise followed by batchnorm and relu.
|
||||
self.depthwise = keras.layers.DepthwiseConv2D(5)
|
||||
self.batch_norm = keras.layers.BatchNormalization()
|
||||
self.relu = keras.layers.ReLU(6.)
|
||||
self.pointwise = keras.layers.Conv2D(out_filters, 1)
|
||||
self.pointwise_bn = keras.layers.BatchNormalization()
|
||||
self.pointwise_rl = keras.layers.ReLU(6.)
|
||||
|
||||
def call(self, inputs, **kwargs):
|
||||
inputs = self.depthwise(inputs, **kwargs)
|
||||
inputs = self.batch_norm(inputs, **kwargs)
|
||||
inputs = self.relu(inputs, **kwargs)
|
||||
inputs = self.pointwise(inputs, **kwargs)
|
||||
inputs = self.pointwise_bn(inputs, **kwargs)
|
||||
return self.pointwise_rl(inputs, **kwargs)
|
||||
|
||||
|
||||
class FastDepth(keras.Model):
|
||||
def get_config(self):
|
||||
# TODO: What to put here?
|
||||
pass
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.mobile_net = keras.applications.MobileNet(include_top=False)
|
||||
|
||||
# TODO: Try keras.layers.SeparableConv2D as well, should do the same thing if relu is used as activation
|
||||
# It probably doesn't, since
|
||||
self.decode_conv1 = DecodeConv(512)
|
||||
self.decode_conv2 = DecodeConv(256)
|
||||
self.decode_conv3 = DecodeConv(128)
|
||||
self.decode_conv4 = DecodeConv(64)
|
||||
self.decode_conv5 = DecodeConv(32)
|
||||
|
||||
self.final_pointwise = keras.layers.Conv2D(1, 1)
|
||||
self.final_pointwise_bn = keras.layers.BatchNormalization()
|
||||
self.final_pointwise_relu = keras.layers.ReLU()
|
||||
|
||||
def call(self, inputs, is_training=False, **kwargs):
|
||||
# Go through mobilenet, then each decode layer, including skip connections using:
|
||||
# keras.layers.Add()
|
||||
inputs = self.mobile_net(inputs, is_training=is_training, **kwargs)
|
||||
|
||||
# FastDepth Additive Decoder
|
||||
inputs = self.decode_conv1(inputs, is_training=is_training, **kwargs)
|
||||
inputs = self.decode_conv2(inputs, is_training=is_training, **kwargs)
|
||||
inputs = inputs + self.mobile_net.get_layer('conv_pw_5_relu').output
|
||||
inputs = self.decode_conv3(inputs, is_training=is_training, **kwargs)
|
||||
inputs = inputs + self.mobile_net.get_layer('conv_pw_3_relu').output
|
||||
inputs = self.decode_conv4(inputs, is_training=is_training, **kwargs)
|
||||
inputs = inputs + self.mobile_net.get_layer('conv_pw_1_relu').output
|
||||
inputs = self.decode_conv5(inputs, is_training=is_training, **kwargs)
|
||||
|
||||
inputs = self.final_pointwise(inputs, is_training=is_training, **kwargs)
|
||||
inputs = self.final_pointwise_bn(inputs, is_training=is_training, **kwargs)
|
||||
return self.final_pointwise_relu(inputs, is_training=is_training, **kwargs)
|
||||
|
||||
|
||||
def load_nyu():
|
||||
builder = tfds.builder('nyu_depth_v2')
|
||||
builder.download_and_prepare(download_dir='../nyu')
|
||||
|
||||
Reference in New Issue
Block a user