Build Functional Model, remove subclassed model

Functional models are way easier to work with,
and I don't need any advanced features that would
require model subclassing
This commit is contained in:
Piv
2021-03-17 18:24:46 +10:30
parent b25b9be4eb
commit 00762f3e86
2 changed files with 42 additions and 112 deletions

64
main.py
View File

@@ -1,70 +1,6 @@
import tensorflow as tf
from tensorflow import keras
import tensorflow_datasets as tfds
class DecodeConv(keras.layers.Layer):
def __init__(self, out_filters, **kwargs):
super().__init__(**kwargs)
# Should be depthwise followed by batchnorm and relu.
self.depthwise = keras.layers.DepthwiseConv2D(5)
self.batch_norm = keras.layers.BatchNormalization()
self.relu = keras.layers.ReLU(6.)
self.pointwise = keras.layers.Conv2D(out_filters, 1)
self.pointwise_bn = keras.layers.BatchNormalization()
self.pointwise_rl = keras.layers.ReLU(6.)
def call(self, inputs, **kwargs):
inputs = self.depthwise(inputs, **kwargs)
inputs = self.batch_norm(inputs, **kwargs)
inputs = self.relu(inputs, **kwargs)
inputs = self.pointwise(inputs, **kwargs)
inputs = self.pointwise_bn(inputs, **kwargs)
return self.pointwise_rl(inputs, **kwargs)
class FastDepth(keras.Model):
def get_config(self):
# TODO: What to put here?
pass
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.mobile_net = keras.applications.MobileNet(include_top=False)
# TODO: Try keras.layers.SeparableConv2D as well, should do the same thing if relu is used as activation
# It probably doesn't, since
self.decode_conv1 = DecodeConv(512)
self.decode_conv2 = DecodeConv(256)
self.decode_conv3 = DecodeConv(128)
self.decode_conv4 = DecodeConv(64)
self.decode_conv5 = DecodeConv(32)
self.final_pointwise = keras.layers.Conv2D(1, 1)
self.final_pointwise_bn = keras.layers.BatchNormalization()
self.final_pointwise_relu = keras.layers.ReLU()
def call(self, inputs, is_training=False, **kwargs):
# Go through mobilenet, then each decode layer, including skip connections using:
# keras.layers.Add()
inputs = self.mobile_net(inputs, is_training=is_training, **kwargs)
# FastDepth Additive Decoder
inputs = self.decode_conv1(inputs, is_training=is_training, **kwargs)
inputs = self.decode_conv2(inputs, is_training=is_training, **kwargs)
inputs = inputs + self.mobile_net.get_layer('conv_pw_5_relu').output
inputs = self.decode_conv3(inputs, is_training=is_training, **kwargs)
inputs = inputs + self.mobile_net.get_layer('conv_pw_3_relu').output
inputs = self.decode_conv4(inputs, is_training=is_training, **kwargs)
inputs = inputs + self.mobile_net.get_layer('conv_pw_1_relu').output
inputs = self.decode_conv5(inputs, is_training=is_training, **kwargs)
inputs = self.final_pointwise(inputs, is_training=is_training, **kwargs)
inputs = self.final_pointwise_bn(inputs, is_training=is_training, **kwargs)
return self.final_pointwise_relu(inputs, is_training=is_training, **kwargs)
def load_nyu():
builder = tfds.builder('nyu_depth_v2')
builder.download_and_prepare(download_dir='../nyu')