Add working train and eval functions for nyu_v2
This commit is contained in:
@@ -1,5 +1,23 @@
|
|||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import tensorflow.keras as keras
|
import tensorflow.keras as keras
|
||||||
|
import tensorflow_datasets as tfds
|
||||||
|
|
||||||
|
|
||||||
|
# Ripped from: https://forums.developer.nvidia.com/t/could-not-create-cudnn-handle-cudnn-status-alloc-failed/108261/4?u=mpivato4
|
||||||
|
# Seems to be an issue on windows so explicitly set gpu growth
|
||||||
|
def fix_windows_gpu():
|
||||||
|
gpus = tf.config.experimental.list_physical_devices('GPU')
|
||||||
|
if gpus:
|
||||||
|
try:
|
||||||
|
# Currently, memory growth needs to be the same across GPUs
|
||||||
|
for gpu in gpus:
|
||||||
|
tf.config.experimental.set_memory_growth(gpu, True)
|
||||||
|
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
|
||||||
|
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
|
||||||
|
except RuntimeError as e:
|
||||||
|
# Memory growth must be set before GPUs have been initialized
|
||||||
|
print(e)
|
||||||
|
|
||||||
|
|
||||||
'''
|
'''
|
||||||
Functional version of fastdepth model
|
Functional version of fastdepth model
|
||||||
@@ -17,11 +35,10 @@ def FDDepthwiseBlock(inputs,
|
|||||||
return keras.layers.ReLU(6., name='conv_pw_%d_relu' % block_id)(x)
|
return keras.layers.ReLU(6., name='conv_pw_%d_relu' % block_id)(x)
|
||||||
|
|
||||||
|
|
||||||
def make_fastdepth_functional(weights=None):
|
def make_mobilenet_nnconv5(weights=None, shape=(224, 224, 3)):
|
||||||
# This doesn't work, at least right now...
|
input = keras.layers.Input(shape=shape)
|
||||||
input = keras.layers.Input(shape=(224, 224, 3))
|
|
||||||
x = input
|
x = input
|
||||||
mobilenet = keras.applications.MobileNet(include_top=False, weights=weights)
|
mobilenet = keras.applications.MobileNet(input_tensor=x, include_top=False, weights=weights)
|
||||||
for layer in mobilenet.layers:
|
for layer in mobilenet.layers:
|
||||||
x = layer(x)
|
x = layer(x)
|
||||||
if layer.name == 'conv_pw_5_relu':
|
if layer.name == 'conv_pw_5_relu':
|
||||||
@@ -55,43 +72,98 @@ def make_fastdepth_functional(weights=None):
|
|||||||
return keras.Model(inputs=input, outputs=x, name="fast_depth")
|
return keras.Model(inputs=input, outputs=x, name="fast_depth")
|
||||||
|
|
||||||
|
|
||||||
|
# TODO: Fix these, float doesn't work same as pytorch
|
||||||
def delta1_metric(y_true, y_pred):
|
def delta1_metric(y_true, y_pred):
|
||||||
maxRatio = tf.maximum(y_pred / y_true, y_true / y_pred)
|
maxRatio = tf.maximum(y_pred / y_true, y_true / y_pred)
|
||||||
return float((maxRatio < 1.25).float().mean())
|
return tf.nn.moments(tf.cast(maxRatio < tf.convert_to_tensor(1.25), tf.float32), axes=None)[0]
|
||||||
|
|
||||||
|
|
||||||
def delta2_metric(y_true, y_pred):
|
def delta2_metric(y_true, y_pred):
|
||||||
maxRatio = tf.maximum(y_pred / y_true, y_true / y_pred)
|
maxRatio = tf.maximum(y_pred / y_true, y_true / y_pred)
|
||||||
return float((maxRatio < 1.2 ** 25).float().mean())
|
return tf.nn.moments(tf.cast(maxRatio < tf.convert_to_tensor(1.25 ** 2), tf.float32), axes=None)[0]
|
||||||
|
|
||||||
|
|
||||||
def delta3_metric(y_true, y_pred):
|
def delta3_metric(y_true, y_pred):
|
||||||
maxRatio = tf.maximum(y_pred / y_true, y_true / y_pred)
|
maxRatio = tf.maximum(y_pred / y_true, y_true / y_pred)
|
||||||
return float((maxRatio < 1.25 ** 3).float().mean())
|
return tf.nn.moments(tf.cast(maxRatio < tf.convert_to_tensor(1.25 ** 3), tf.float32), axes=None)[0]
|
||||||
|
|
||||||
|
|
||||||
def fastdepth_for_training():
|
def compile(model):
|
||||||
# Pretrained mobilenet on imagenet dataset
|
# TODO: Learning rate (exponential decay)
|
||||||
model = make_fastdepth_functional('imagenet')
|
model.compile(optimizer=keras.optimizers.SGD(momentum=0.9),
|
||||||
return model.compile(optimizer=keras.optimizers.SGD(momentum=0.9),
|
loss=keras.losses.MeanSquaredError(),
|
||||||
loss=keras.losses.MSE(),
|
metrics=[keras.metrics.RootMeanSquaredError(),
|
||||||
metrics=[keras.metrics.RootMeanSquaredError(),
|
keras.metrics.MeanSquaredError(),
|
||||||
keras.metrics.MeanSquaredError(),
|
delta1_metric,
|
||||||
delta1_metric,
|
delta2_metric,
|
||||||
delta2_metric,
|
delta3_metric])
|
||||||
delta3_metric])
|
|
||||||
|
|
||||||
|
|
||||||
def train_compiled_model(compiled_model, dataset):
|
def train(existing_model=None, pretrained_weights='imagenet', epochs=4, save_file=None, dataset=None):
|
||||||
|
if not existing_model:
|
||||||
|
existing_model = make_mobilenet_nnconv5(pretrained_weights)
|
||||||
|
compile(existing_model)
|
||||||
|
if not dataset:
|
||||||
|
dataset = load_nyu()
|
||||||
|
existing_model.fit(dataset, epochs=epochs)
|
||||||
|
if save_file:
|
||||||
|
existing_model.save(save_file)
|
||||||
|
return existing_model
|
||||||
|
|
||||||
|
|
||||||
|
def evaluate(compiled_model, dataset=None):
|
||||||
"""
|
"""
|
||||||
|
Evaluate the model using rmse, delta1/2/3 metrics
|
||||||
|
:param compiled_model: Compiled, trained model to evaluate
|
||||||
|
:param dataset: Dataset for evaluation. Should be of format {'image': image, 'depth': label},
|
||||||
|
where label width/height matches image width/height.
|
||||||
|
Defaults to Tensorflow nyu_v2 evaluation split dataset (https://www.tensorflow.org/datasets/catalog/nyu_depth_v2)
|
||||||
|
"""
|
||||||
|
if not dataset:
|
||||||
|
dataset = load_nyu_evaluate()
|
||||||
|
compiled_model.evaluate(dataset, verbose=1)
|
||||||
|
|
||||||
:param compiled_model: Compiled model to train on
|
|
||||||
:param dataset: Dataset to train on (must be compatible with model
|
def forward(model, image):
|
||||||
|
"""
|
||||||
|
Propagate a single or batch of images through the model. Image(s) should be in format NHWC
|
||||||
|
:param model:
|
||||||
|
:param image:
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
# TODO: Use tf nyu_v2 dataset to train.
|
return model(crop_and_resize(image))
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
def load_model(file):
|
||||||
make_fastdepth_functional().summary()
|
return keras.models.load_model(file, custom_objects={'delta1_metric': delta1_metric,
|
||||||
|
'delta2_metric': delta2_metric,
|
||||||
|
'delta3_metric': delta3_metric})
|
||||||
|
|
||||||
|
|
||||||
|
def crop_and_resize(x):
|
||||||
|
shape = tf.shape(x['depth'])
|
||||||
|
|
||||||
|
def layer():
|
||||||
|
return keras.Sequential([
|
||||||
|
keras.layers.experimental.preprocessing.CenterCrop(shape[1], shape[2]),
|
||||||
|
keras.layers.experimental.preprocessing.Resizing(224, 224, interpolation='nearest')
|
||||||
|
])
|
||||||
|
|
||||||
|
# Reshape label to 4d, can't use array unwrap as it's unsupported by tensorflow
|
||||||
|
return layer()(x['image']), layer()(tf.reshape(x['depth'], [shape[0], shape[1], shape[2], 1]))
|
||||||
|
|
||||||
|
|
||||||
|
def load_nyu():
|
||||||
|
builder = tfds.builder('nyu_depth_v2')
|
||||||
|
builder.download_and_prepare(download_dir='../nyu')
|
||||||
|
return builder \
|
||||||
|
.as_dataset(split='train', shuffle_files=True) \
|
||||||
|
.shuffle(buffer_size=1024) \
|
||||||
|
.batch(8) \
|
||||||
|
.map(lambda x: crop_and_resize(x))
|
||||||
|
|
||||||
|
|
||||||
|
def load_nyu_evaluate():
|
||||||
|
builder = tfds.builder('nyu_depth_v2')
|
||||||
|
builder.download_and_prepare(download_dir='../nyu')
|
||||||
|
return builder.as_dataset(split='validation').batch(1).map(lambda x: crop_and_resize(x))
|
||||||
|
|||||||
14
main.py
14
main.py
@@ -1,11 +1,7 @@
|
|||||||
import tensorflow_datasets as tfds
|
import fast_depth_functional as fd
|
||||||
|
|
||||||
|
|
||||||
def load_nyu():
|
|
||||||
builder = tfds.builder('nyu_depth_v2')
|
|
||||||
builder.download_and_prepare(download_dir='../nyu')
|
|
||||||
return builder.as_dataset(split='train', shuffle_files=True)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
load_nyu()
|
fd.fix_windows_gpu()
|
||||||
|
model = fd.load_model('fast_depth_nyu_v2_224_224_3_e1')
|
||||||
|
fd.compile(model)
|
||||||
|
fd.evaluate(model)
|
||||||
|
|||||||
Reference in New Issue
Block a user