Add metrics, prepare for training
This commit is contained in:
@@ -1,7 +1,8 @@
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras as keras
|
||||
|
||||
'''
|
||||
Functional version of fastdepth model. Note that this doesn't work at the moment
|
||||
Functional version of fastdepth model
|
||||
'''
|
||||
|
||||
|
||||
@@ -16,11 +17,11 @@ def FDDepthwiseBlock(inputs,
|
||||
return keras.layers.ReLU(6., name='conv_pw_%d_relu' % block_id)(x)
|
||||
|
||||
|
||||
def make_fastdepth_functional():
|
||||
def make_fastdepth_functional(weights=None):
|
||||
# This doesn't work, at least right now...
|
||||
input = keras.layers.Input(shape=(224, 224, 3))
|
||||
x = input
|
||||
mobilenet = keras.applications.MobileNet(include_top=False, weights=None)
|
||||
mobilenet = keras.applications.MobileNet(include_top=False, weights=weights)
|
||||
for layer in mobilenet.layers:
|
||||
x = layer(x)
|
||||
if layer.name == 'conv_pw_5_relu':
|
||||
@@ -30,6 +31,7 @@ def make_fastdepth_functional():
|
||||
elif layer.name == 'conv_pw_1_relu':
|
||||
conv1 = x
|
||||
|
||||
# Fast depth decoder
|
||||
x = FDDepthwiseBlock(x, 512, block_id=14)
|
||||
# TODO: Bilinear interpolation
|
||||
# x = keras.layers.experimental.preprocessing.Resizing(14, 14)
|
||||
@@ -53,5 +55,43 @@ def make_fastdepth_functional():
|
||||
return keras.Model(inputs=input, outputs=x, name="fast_depth")
|
||||
|
||||
|
||||
def delta1_metric(y_true, y_pred):
|
||||
maxRatio = tf.maximum(y_pred / y_true, y_true / y_pred)
|
||||
return float((maxRatio < 1.25).float().mean())
|
||||
|
||||
|
||||
def delta2_metric(y_true, y_pred):
|
||||
maxRatio = tf.maximum(y_pred / y_true, y_true / y_pred)
|
||||
return float((maxRatio < 1.2 ** 25).float().mean())
|
||||
|
||||
|
||||
def delta3_metric(y_true, y_pred):
|
||||
maxRatio = tf.maximum(y_pred / y_true, y_true / y_pred)
|
||||
return float((maxRatio < 1.25 ** 3).float().mean())
|
||||
|
||||
|
||||
def fastdepth_for_training():
|
||||
# Pretrained mobilenet on imagenet dataset
|
||||
model = make_fastdepth_functional('imagenet')
|
||||
return model.compile(optimizer=keras.optimizers.SGD(momentum=0.9),
|
||||
loss=keras.losses.MSE(),
|
||||
metrics=[keras.metrics.RootMeanSquaredError(),
|
||||
keras.metrics.MeanSquaredError(),
|
||||
delta1_metric,
|
||||
delta2_metric,
|
||||
delta3_metric])
|
||||
|
||||
|
||||
def train_compiled_model(compiled_model, dataset):
|
||||
"""
|
||||
|
||||
:param compiled_model: Compiled model to train on
|
||||
:param dataset: Dataset to train on (must be compatible with model
|
||||
:return:
|
||||
"""
|
||||
# TODO: Use tf nyu_v2 dataset to train.
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
make_fastdepth_functional().summary()
|
||||
|
||||
8
main.py
8
main.py
@@ -7,13 +7,5 @@ def load_nyu():
|
||||
return builder.as_dataset(split='train', shuffle_files=True)
|
||||
|
||||
|
||||
def print_hi(name):
|
||||
# Use a breakpoint in the code line below to debug your script.
|
||||
print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint.
|
||||
|
||||
|
||||
# Press the green button in the gutter to run the script.
|
||||
if __name__ == '__main__':
|
||||
load_nyu()
|
||||
|
||||
# See PyCharm help at https://www.jetbrains.com/help/pycharm/
|
||||
|
||||
Reference in New Issue
Block a user