Fix packnet residual block and layers, refactor to support different amount of residual layers

I noticed the number of parameters didn't match up to the paper (~128 million)
Fixed this by doing the following:
 - Kernel size of 1 for 3rd conv2d in residual block
 - Use add rather than concat in residual block
 - Fixed add/concat features in decode layers
 - Fixed final layers -> this also allows features_3d == 16 to work
This commit is contained in:
Piv
2021-08-07 21:00:17 +09:30
parent f56e663fca
commit 58b8e53986

View File

@@ -22,10 +22,10 @@ def residual_layer(inputs, out_channels, stride, dropout=None):
x = layers.Conv2D(out_channels, 3, padding='same', strides=stride)(inputs)
x = layers.Conv2D(out_channels, 3, padding='same')(x)
shortcut = layers.Conv2D(
out_channels, 3, padding='same', strides=stride)(inputs)
out_channels, 1, padding='same', strides=stride)(inputs)
if dropout:
shortcut = keras.layers.SpatialDropout2D(dropout)(shortcut)
x = keras.layers.Concatenate()([x, shortcut])
x = keras.layers.Add()([x, shortcut])
x = group_norm.GroupNormalization(16)(x)
return keras.layers.ELU()(x)
@@ -53,10 +53,10 @@ def packnet_inverse_depth(inputs, out_channels=1, min_depth=0.5):
def pack_3d(inputs, kernel_size, r=2, features_3d=8):
"""
Implementatino of the 3d packing block proposed here: https://arxiv.org/abs/1905.02693
:param inputs:
:param kernel_size:
:param r:
:param features_3d:
:param inputs: Tensor inputs
:param kernel_size: Conv3D kernels size
:param r: Packing factor
:param features_3d: Packing depth (increase to increase number of parameters and accuracy)
:return:
"""
# Data format for single image in nyu is HWC (space_to_depth uses NHWC as default)
@@ -78,7 +78,6 @@ def unpack_3d(inputs, out_channels, kernel_size, r=2, features_3d=8):
return nn.depth_to_space(x, r)
# TODO: Support different size packnet for scaling up/down
# TODO: Support different channel format (right now we're supporting NHWC, we should also support NCHW)
def make_packnet(shape=(224, 224, 3), skip_add=True, features_3d=4, dropout=None):
"""
@@ -109,42 +108,48 @@ def make_packnet(shape=(224, 224, 3), skip_add=True, features_3d=4, dropout=None
# ================ ENCODER =================
# ================ DECODER =================
# layer 7
x = unpack_3d(x, 512, 3, features_3d=features_3d)
# Addition requires we half the outputs so there is a matching number of channels
divide_factor = (2 if skip_add else 1)
# layer 12 - 13
x = unpack_3d(x, 512 // divide_factor, 3, features_3d=features_3d)
x = keras.layers.Add()(
[x, skip_5]) if skip_add else keras.layers.Concatenate()([x, skip_5])
x = packnet_conv2d(x, 512, 3, 1)
# layer 8
x = unpack_3d(x, 256, 3, features_3d=features_3d)
# layer 14 - 15
x = unpack_3d(x, 256 // divide_factor, 3, features_3d=features_3d)
x = keras.layers.Add()(
[x, skip_4]) if skip_add else keras.layers.Concatenate()([x, skip_4])
x = packnet_conv2d(x, 256, 3, 1)
layer_8 = x
# layer 9
# layer 16
x = packnet_inverse_depth(x, 1)
# layer 10
u_layer_8 = unpack_3d(layer_8, 128, 3, features_3d=features_3d)
# layer 17 - 18
u_layer_8 = unpack_3d(layer_8, 128 // divide_factor, 3, features_3d=features_3d)
x = keras.layers.UpSampling2D()(x)
x = keras.layers.Add()([u_layer_8, skip_3, x]) if skip_add else keras.layers.Concatenate()([u_layer_8, skip_3, x])
x = packnet_conv2d(x, 128, 3, 1)
layer_10 = x
# layer 11
# layer 19
x = packnet_inverse_depth(x, 1)
# layer 12
# layer 20 - 21
u_layer_10 = unpack_3d(layer_10, 64, 3, features_3d=features_3d)
x = keras.layers.UpSampling2D()(x)
x = keras.layers.Add()([u_layer_10, skip_2, x]) if skip_add else keras.layers.Concatenate()([u_layer_10, skip_2, x])
x = packnet_conv2d(x, 64, 3, 1)
layer_12 = x
# layer 13
# layer 22
x = packnet_inverse_depth(x)
# layer 14
u_layer_12 = unpack_3d(layer_12, 32, 3, features_3d=features_3d)
# layer 23 - 24
u_layer_12 = unpack_3d(layer_12, 64, 3, features_3d=features_3d)
x = keras.layers.UpSampling2D()(x)
x = keras.layers.Add()([u_layer_12, skip_1, x]) if skip_add else keras.layers.Concatenate()([u_layer_12, skip_1, x])
x = packnet_conv2d(x, 32, 3, 1)
# layer 15
x = packnet_conv2d(x, 64, 3, 1)
# layer 25
x = packnet_inverse_depth(x)
# ================ DECODER =================
return keras.Model(inputs=input, outputs=x, name="PackNet")
if __name__ == '__main__':
# This is the implementation used by the packnet sfm paper
make_packnet(features_3d=8, skip_add=False).summary()