Implement details of dense depth paper

This commit is contained in:
Piv
2021-04-14 12:38:51 +09:30
parent f598005b73
commit cf7d2561ec
2 changed files with 27 additions and 36 deletions

View File

@@ -2,21 +2,19 @@ import tensorflow as tf
import tensorflow.keras.backend as K
def dense_depth_loss_function(y_true, y_pred, theta=0.1, maxDepthVal=1000.0 / 10.0):
# Point-wise depth
l_depth = K.mean(K.abs(y_pred - y_true), axis=-1)
def dense_depth_loss_function(y, y_pred):
"""
Implementation of the loss from the dense depth paper https://arxiv.org/pdf/1812.11941.pdf
"""
# Point-wise L1 loss
l_depth = K.mean(K.abs(y_pred - y), axis=-1)
# Edges
dy_true, dx_true = tf.image.image_gradients(y_true)
# L1 loss over image gradients
dy, dx = tf.image.image_gradients(y)
dy_pred, dx_pred = tf.image.image_gradients(y_pred)
l_edges = K.mean(K.abs(dy_pred - dy_true) + K.abs(dx_pred - dx_true), axis=-1)
l_grad = K.mean(K.abs(dy_pred - dy) + K.abs(dx_pred - dx), axis=-1)
# Structural similarity (SSIM) index
l_ssim = K.clip((1 - tf.image.ssim(y_true, y_pred, maxDepthVal)) * 0.5, 0, 1)
# Structural Similarity (SSIM)
l_ssim = (1 - tf.image.ssim(y, y_pred, 500)) / 2
# Weights
w1 = 1.0
w2 = 1.0
w3 = theta
return (w1 * l_ssim) + (w2 * K.mean(l_edges)) + (w3 * K.mean(l_depth))
return 0.1 * K.mean(l_depth) + l_grad + l_ssim