Files
fast-depth-tf/packnet_functional.py

167 lines
6.4 KiB
Python

import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
from tensorflow import nn
import group_norm
def pack_layer():
pass
def residual_layer(inputs, out_channels, stride, dropout=None):
"""
Keras implementation of the Residual block (ResNet) as used in PackNet
:param inputs:
:param out_channels:
:param stride:
:param dropout:
:return:
"""
x = layers.Conv2D(out_channels, 3, padding='same', strides=stride)(inputs)
x = layers.Conv2D(out_channels, 3, padding='same')(x)
shortcut = layers.Conv2D(
out_channels, 1, padding='same', strides=stride)(inputs)
if dropout:
shortcut = keras.layers.SpatialDropout2D(dropout)(shortcut)
x = keras.layers.Add()([x, shortcut])
x = group_norm.GroupNormalization(16)(x)
return keras.layers.ELU()(x)
# Packnet usually expects more than one layer per block (2,2,3,3)
def residual_block(inputs, out_channels, residual_layers, stride, dropout=None):
x = inputs
for i in range(0, residual_layers):
x = residual_layer(x, out_channels, stride, dropout)
return x
def packnet_conv2d(inputs, out_channels, kernel_size, stride):
x = keras.layers.Conv2D(out_channels, kernel_size,
stride, padding='same')(inputs)
x = group_norm.GroupNormalization(16)(x)
return keras.layers.ELU()(x)
def packnet_inverse_depth(inputs, out_channels=1, min_depth=0.5):
x = layers.Conv2D(out_channels, 3, padding='same')(inputs)
return keras.activations.sigmoid(x) / min_depth
def pack_3d(inputs, kernel_size, r=2, features_3d=8):
"""
Implementation of the 3d packing block proposed here: https://arxiv.org/abs/1905.02693
:param inputs: Tensor inputs
:param kernel_size: Conv3D kernels size
:param r: Packing factor
:param features_3d: Packing depth (increase to increase number of parameters and accuracy)
:return:
"""
# Data format for single image in nyu is HWC (space_to_depth uses NHWC as default)
x = nn.space_to_depth(inputs, r)
x = tf.expand_dims(x, 4)
x = keras.layers.Conv3D(features_3d, kernel_size=3, padding='same')(x)
b, h, w, c, d = x.shape
x = keras.layers.Reshape((h, w, c * d))(x)
return packnet_conv2d(x, inputs.shape[3], kernel_size, 1)
def unpack_3d(inputs, out_channels, kernel_size, r=2, features_3d=8):
x = packnet_conv2d(inputs, out_channels * (r ** 2) //
features_3d, kernel_size, 1)
x = tf.expand_dims(x, 4) # B x H/2 x W/2 x 4(out)/D x D
x = keras.layers.Conv3D(features_3d, kernel_size=3, padding='same')(x)
b, h, w, c, d = x.shape
x = keras.layers.Reshape([h, w, c * d])(x)
return nn.depth_to_space(x, r)
# TODO: Support different channel format (right now we're supporting NHWC, we should also support NCHW)
def make_packnet(shape=(224, 224, 3), skip_add=False, features_3d=8, dropout=None, small=False):
"""
Make the PackNet depth network.
:param shape: Input shape of the image
:param skip_add: Set to use add rather than concat skip connections, defaults to True
:param features_3d: Number of layers in 3D conv for packing/unpacking layers
:param dropout: Whether to build the model with dropout layers fpr regularisation. Useful in training only
:param small: Set True to not include the middle-most layer. Reduces params from ~128M -> ~34M
Further reductions can be achieved by using additive skip connections and less 3d features (down to min ~10M)
:return: Packnet Keras Model
"""
# ================ ENCODER =================
input = keras.layers.Input(shape=shape)
initial_conv_channels = 32 if small else 64
x = packnet_conv2d(input, initial_conv_channels, 5, 1)
skip_1 = x
x = packnet_conv2d(x, 64, 7, 1)
x = pack_3d(x, 5, features_3d=features_3d)
skip_2 = x
x = residual_block(x, 64, 2, 1, dropout)
x = pack_3d(x, 3, features_3d=features_3d)
skip_3 = x
x = residual_block(x, 128, 2, 1, dropout)
x = pack_3d(x, 3, features_3d=features_3d)
skip_4 = x
x = residual_block(x, 256, 3, 1, dropout)
x = pack_3d(x, 3, features_3d=features_3d)
skip_5 = x
if not small:
x = residual_block(x, 512, 3, 1, dropout)
x = pack_3d(x, 3, features_3d=features_3d)
# ================ ENCODER =================
# ================ DECODER =================
# Addition requires we half the outputs so there is a matching number of channels
divide_factor = (2 if skip_add else 1)
# layer 7
if not small:
x = unpack_3d(x, 512 // divide_factor, 3, features_3d=features_3d)
x = keras.layers.Add()(
[x, skip_5]) if skip_add else keras.layers.Concatenate()([x, skip_5])
x = packnet_conv2d(x, 512, 3, 1)
# layer 8
x = unpack_3d(x, 256 // divide_factor, 3, features_3d=features_3d)
x = keras.layers.Add()(
[x, skip_4]) if skip_add else keras.layers.Concatenate()([x, skip_4])
x = packnet_conv2d(x, 256, 3, 1)
layer_8 = x
# layer 9
x = packnet_inverse_depth(x, 1)
# layer 10
u_layer_8 = unpack_3d(layer_8, 128 // divide_factor, 3, features_3d=features_3d)
x = keras.layers.UpSampling2D()(x)
x = keras.layers.Add()([u_layer_8, skip_3, x]) if skip_add else keras.layers.Concatenate()([u_layer_8, skip_3, x])
x = packnet_conv2d(x, 128, 3, 1)
layer_10 = x
# layer 11
x = packnet_inverse_depth(x, 1)
# layer 12
u_layer_10 = unpack_3d(layer_10, 64, 3, features_3d=features_3d)
x = keras.layers.UpSampling2D()(x)
x = keras.layers.Add()([u_layer_10, skip_2, x]) if skip_add else keras.layers.Concatenate()([u_layer_10, skip_2, x])
x = packnet_conv2d(x, 64, 3, 1)
layer_12 = x
# layer 13
x = packnet_inverse_depth(x)
# layer 14
u_layer_12 = unpack_3d(layer_12, initial_conv_channels, 3, features_3d=features_3d)
x = keras.layers.UpSampling2D()(x)
x = keras.layers.Add()([u_layer_12, skip_1, x]) if skip_add else keras.layers.Concatenate()([u_layer_12, skip_1, x])
x = packnet_conv2d(x, initial_conv_channels, 3, 1)
# layer 15
x = packnet_inverse_depth(x)
# ================ DECODER =================
return keras.Model(inputs=input, outputs=x, name="PackNet")
if __name__ == '__main__':
# This is the implementation used by the packnet sfm paper
make_packnet().summary()
# This is the very small version of packnet
make_packnet(small=True, features_3d=1, skip_add=True).summary()