Files
fast-depth-tf/unsupervised/load.py

53 lines
1.9 KiB
Python

import os
import cv2
def video_generator(video_path_or_folder, intrinsics, allowed_extensions=('mp4', 'mkv', 'mov')):
"""
Create a generator for unsupervised training on depth sequences from a video file or folder of video files
:param video_path_or_folder: Video file or folder with list of video files to iterate through
:param intrinsics: Intrinsics should be static for a single video
:param allowed_extensions: Allowed video extensions, to not accidentally pick files that aren't videos
:return:
"""
if os.path.isfile(video_path_or_folder):
# TODO: How to re-yield? Is this enough, since I'm just returning the actual generator?
# Or do I need to iterate like below?
return _single_video_generator(video_path_or_folder)
else:
for root, dirs, files in os.walk(video_path_or_folder):
for file in files:
if os.path.splitext(file)[1] in allowed_extensions:
for frames in _single_video_generator(file):
yield frames
def _single_video_generator(video_file):
# Single video file
video = cv2.VideoCapture(video_file)
try:
# Buffer to store 3 frames, yield when this fills up
current_frames = []
while video.grab():
# TODO: Should I be skipping frames or doing some magic to the frames? Or just leave that to some other
# function assuming this will be used in a tf.data object?
current_frames.append(video.retrieve())
if len(current_frames) == 3:
temp_frames = current_frames
current_frames = []
# TODO: Convert to tensor or something notable (e.g. dict of 3 frames)
yield temp_frames
finally:
video.release()
def image_generator(root_folder):
"""
Create an image generator for unsupervised training
:param root_folder:
:return:
"""
pass