Files
fast-depth-tf/openvino_inference.py
2021-07-29 20:52:14 +09:30

75 lines
2.9 KiB
Python

import argparse
import time
import cv2
import matplotlib.pyplot as plt
import numpy as np
from openvino.inference_engine import IECore
def parse_args() -> argparse.Namespace:
"""Parse and return command line arguments"""
parser = argparse.ArgumentParser(add_help=False)
args = parser.add_argument_group('Options')
# fmt: off
args.add_argument('-h', '--help', action='help', help='Show this help message and exit.')
args.add_argument('-m', '--model', required=True, type=str,
help='Required. Path to an .xml or .onnx file with a trained model.')
args.add_argument('-i', '--input', required=True, type=str, help='Required. Path to an image file.')
args.add_argument('-d', '--device', default='CPU', type=str,
help='Optional. Specify the target device to infer on; CPU, GPU, MYRIAD, HDDL or HETERO: '
'is acceptable. The sample will look for a suitable plugin for device specified. '
'Default value is CPU.')
# fmt: on
return parser.parse_args()
def sample(model_location, image_location, device='CPU'):
ie = IECore()
net = ie.read_network(model=model_location)
input_blob = next(iter(net.input_info))
output_blob = next(iter(net.outputs))
b, c, h, w = net.input_info[input_blob].input_data.shape
image = cv2.imread(image_location)
input_ratio = h / w
target_ratio = image.shape[0] / image.shape[1]
crop_axis = 0 if target_ratio > input_ratio else 1
crop_factor = input_ratio * target_ratio / 2
center = [image.shape[0] / 2, image.shape[1] / 2]
x1 = int(center[0] - image.shape[0] * crop_factor) if crop_axis == 0 else 0
x2 = int(center[0] + image.shape[0] * crop_factor) if crop_axis == 0 else image.shape[0]
y1 = int(center[1] - image.shape[1] * crop_factor) if crop_axis == 1 else 0
y2 = int(center[1] + image.shape[1] * crop_factor) if crop_axis == 1 else image.shape[1]
# Crop to target aspect ratio
image = image[x1:x2, y1:y2]
if image.shape[:-1] != (h, w):
image = cv2.resize(image, (w, h))
image = image.transpose((2, 0, 1))
# For batching
image = np.expand_dims(image, axis=0)
exec_net = ie.load_network(network=net, device_name=device)
start = time.time()
res = exec_net.infer(inputs={input_blob: image})
print('First Inference Time Seconds: ' + str(time.time() - start))
start = time.time()
res = exec_net.infer(inputs={input_blob: image})
print('Second Inference Time Seconds: ' + str(time.time() - start))
start = time.time()
res = exec_net.infer(inputs={input_blob: image})
print('Third Inference Time Seconds: ' + str(time.time() - start))
res = res[output_blob]
depth = res[0][0]
fig = plt.figure()
ii = plt.imshow(depth, interpolation='nearest')
fig.colorbar(ii)
plt.show()
if __name__ == '__main__':
parsed_args = parse_args()
sample(parsed_args.model, parsed_args.input, parsed_args.device)