Files
fast-depth-tf/packnet_tests.py

38 lines
1.2 KiB
Python

import unittest
import tensorflow as tf
import packnet_functional as p
class PacknetTests(unittest.TestCase):
def test_pack_3d_layer(self):
# 3d packing expects a multiple of 16 for channels due to using 16 groups in group normalisation
test_input = tf.random.normal([4, 224, 224, 32])
y = p.pack_3d(test_input, 3, features_3d=4)
out_shape = [i for i in test_input.shape]
out_shape[1] = out_shape[1] // 2
out_shape[2] = out_shape[2] // 2
# TODO: Anything else we can test here for validity?
self.assertEqual(y.shape, out_shape)
def test_unpack_3d_layer(self):
num_output_channels = 32
test_input = tf.random.normal([4, 112, 112, 64])
y = p.unpack_3d(test_input, num_output_channels, 3, features_3d=4)
out_shape = [i for i in test_input.shape]
out_shape[1] = out_shape[1] * 2
out_shape[2] = out_shape[2] * 2
out_shape[3] = num_output_channels
# TODO: Anything else we can test here for validity?
self.assertEqual(y.shape, out_shape)
def test_packnet(self):
packnet = p.make_packnet()
self.assertIsNotNone(packnet)
if __name__ == '__main__':
unittest.main()