131 lines
5.0 KiB
Python
131 lines
5.0 KiB
Python
from GestureRecognition.handrecogniser import HandRecogniser
|
|
import numpy as np
|
|
import cv2
|
|
|
|
class SimpleHandRecogniser(HandRecogniser):
|
|
def __init__(self, image_path = ""):
|
|
self._image_path = image_path
|
|
|
|
def load_image(self, image_path = None):
|
|
"""
|
|
Loads the given image path into memory. This must be called before
|
|
any other operations can be completed.
|
|
"""
|
|
if image_path is not None:
|
|
self._image_path = image_path
|
|
self.img = cv2.imread(self._image_path, 1)
|
|
self.img = cv2.resize(self.img, None, fx=0.1, fy=0.1, interpolation = cv2.INTER_AREA)
|
|
|
|
def __calc_pos_y(self, x, radius, centre):
|
|
"""
|
|
Calculates the position of y on a given circle radius and centre, given coordinate x.
|
|
"""
|
|
return int((radius**2 - (x - centre[0])**2)**(1/2) + centre[1])
|
|
|
|
def __segment_image(self):
|
|
"""
|
|
Segments the hand from the rest of the image to get a threshold.
|
|
"""
|
|
self.img_hsv = cv2.GaussianBlur(self.img_hsv,(5,5),0)
|
|
|
|
lower_skin = (0, 0, 153)
|
|
upper_skin = (45, 153, 255)
|
|
|
|
# Only need mask, as we can just use this to do the hand segmentation.
|
|
self.mask = cv2.inRange(self.img_hsv, lower_skin, upper_skin)
|
|
|
|
# Apply another blur to rmeove any small holes/noise
|
|
self.mask = self.__denoise(self.mask)
|
|
ret, self.mask = cv2.threshold(self.mask, 50, 255, cv2.THRESH_BINARY)
|
|
|
|
def __denoise(self, image):
|
|
"""
|
|
Applies a 5x5 gaussian blur to remove noise from the image.
|
|
"""
|
|
return cv2.GaussianBlur(image,(5,5),0)
|
|
|
|
def __calc_circle(self, image, radius_percent = 0.52):
|
|
"""
|
|
Calculates the equation of the circle (radius, centre) from a given
|
|
threshold image, so that the circle is the center of gravity of the
|
|
given threshold pixels, and the radius is by default 55% of the total
|
|
size.
|
|
"""
|
|
k = np.sum(self.mask) / 255
|
|
|
|
# Taking indices for num of rows.
|
|
x_ind = np.arange(0,self.mask.shape[1])
|
|
y_ind = np.arange(0,self.mask.shape[0])
|
|
coords_x = np.zeros((self.mask.shape[0], self.mask.shape[1]))
|
|
coords_y = np.zeros((self.mask.shape[0], self.mask.shape[1]))
|
|
coords_x[:,:] = x_ind
|
|
|
|
# Even this is extremely quick as it goes through rows in the numpy array, which in python is much faster than columns
|
|
for element in y_ind:
|
|
coords_y[element,:] = element
|
|
|
|
# Now need to get the average x value and y value for centre of gravity
|
|
centre = (int(np.sum(coords_x[self.mask == 255])/k), int(np.sum(coords_y[self.mask == 255])/k))
|
|
|
|
# Calculate radius of circle:
|
|
# May need to calculate diameter as well.
|
|
# Just take min/max x values and y values
|
|
x_min = np.min(coords_x[self.mask == 255])
|
|
x_max = np.max(coords_x[self.mask == 255])
|
|
y_min = np.min(coords_y[self.mask == 255])
|
|
y_max = np.max(coords_y[self.mask == 255])
|
|
|
|
candidate_pts = [(x_min, y_min), (x_min, y_max), (x_max, y_min), (x_max, y_max)]
|
|
radius = 0
|
|
|
|
# Check with each point to see which is furthest from the centre.
|
|
for pt in candidate_pts:
|
|
# Calculate Euclydian Distance
|
|
new_distance = ((pt[0] - centre[0])**2 + (pt[1] - centre[1])**2)**(1/2)
|
|
if new_distance > radius:
|
|
radius = new_distance
|
|
|
|
radius = int(radius * radius_percent)
|
|
|
|
return radius, centre
|
|
|
|
def __shift_pixels(self, image, shift_radius):
|
|
image[:,:,0] = image[:,:,0] + shift_radius
|
|
return np.where(image[:,:,0] > 179, image[:,:,0] - 179, image[:,:,0])
|
|
|
|
def get_gesture(self):
|
|
"""
|
|
Calculates the actual gesture, returning the number of fingers
|
|
seen in the image.
|
|
"""
|
|
if self.img is None:
|
|
return 0
|
|
|
|
self.img_hsv = cv2.cvtColor(self.img, cv2.COLOR_BGR2HSV)
|
|
|
|
# Need to shift red pixels so they can be 0-20 rather than 250-~20
|
|
self.img_hsv = self.__shift_pixels(self.img_hsv, 30)
|
|
|
|
self.img_hsv = self.__denoise(self.img_hsv)
|
|
self.__segment_image()
|
|
|
|
radius, centre = self.__calc_circle(self.mask)
|
|
|
|
# Now go around the circle to calculate num of times going 0->255 or vice-versa.
|
|
# First just do it the naive way with loops.
|
|
# Equation of the circle:
|
|
# y = sqrt(r2 - (x-c)2) + c
|
|
prev_x = centre[0] - radius
|
|
prev_y = [self.__calc_pos_y(centre[0] - radius, radius, centre), self.__calc_pos_y(centre[0] - radius, radius, centre)]
|
|
num_change = 0
|
|
for x in range(centre[0] - radius + 1, centre[0] + radius):
|
|
ypos = self.__calc_pos_y(x, radius, centre)
|
|
y = [ypos, centre[1] - (ypos-centre[1])]
|
|
if(self.mask[y[0], x] != self.mask[prev_y[0], prev_x]):
|
|
num_change += 1
|
|
if self.mask[y[1], x] != self.mask[prev_y[1], prev_x] and y[0] != y[1]:
|
|
num_change += 1
|
|
prev_x = x
|
|
prev_y = y
|
|
|
|
return num_change / 2 - 1 |