Files
picar/GestureRecognition/HandRecGray.py
2018-11-22 15:59:57 +10:30

63 lines
1.4 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Thu Nov 22 14:16:46 2018
@author: pivatom
"""
import numpy as np
import cv2
img = cv2.imread('H:\car\GestureRecognition\IMG_0818.png', 1)
# Downscale the image
img = cv2.resize(img, None, fx=0.1, fy=0.1, interpolation = cv2.INTER_AREA)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_gray[img_gray[:,:] > 90] = 255
img_gray[img_gray[:,:] < 90] = 0
# Threshold to binary.
ret,img_thresh = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
# Doesn't take too long.
k = np.sum(img_thresh) / 255
x_ind = np.indices(img_thresh.shape[1])
coords = np.zeros(img_thresh.shape)
# generate individual coordinates for x then transpose the matrix o
#
# First sum x coordinates.
#xb = int(img_ind[img_thresh == 255].sum(axis=1).sum()/k)
#print(xb)
# Then sum y coordinates
#yb = int(img_ind[img_thresh == 255].sum(axis=0).sum()/k)
#print(yb)
x,y,k,xb,yb = 0,0,0,0,0
# this is inherently slow...like very very slow...
for pix in img_thresh:
for j in pix:
if j == 255:
k += 1
xb += x
yb += y
x += 1
y += 1
x = 0
centre = (int(xb/k), int(yb/k))
cv2.rectangle(img_thresh, centre, (centre[0] + 20, centre[1] + 20), (0,0,255), 3)
cv2.circle(img_thresh, centre, 140, (0,0,0), 3)
# Now need to trace around the circle to figure out where the fingers are.
cv2.imshow("Binary-cot-out", img_thresh)
cv2.waitKey(0)
cv2.destroyAllWindows()